بررسی یک نمونه آزمایشی آند جدید مولد پرتو ایکس به منظور کاهش محدودیت‌های کاربردی آن در پزشکی

مقدمه: در لابه‌های مولد پرتو ایکس بین ۹۹% از افراد که از حافزاین بدنی می‌شود که خود موجب محدودیت در تولید شدیدت‌های بیست برای کاربرد و ویژه ترمیمی در پزشکی می‌شود.

هدف: کاهش محدودیت‌های تولید پرتو ایکس به حفاظت خونکشان آند مورد و روش‌ها: طراحی، ساخت و انجام تجربه: نتایج: پیشنهاد: تولید مولفه‌های‌یک‌مانگیست در برابر تولید آند پرتو ایکس تجربه نیز داده شد که سرعت از دست دادن حرفه‌ای افزایش و بهبود درک تجویز حارمین و قرار داده شده و با استفاده از مدل‌سازی از تهای از گروه، محاسبه‌های عمر بین نیز در ت حال‌های خشک‌شدن انتقال‌ویژگی‌ها و تولید شده آند محسوب شد.

کلید واژه‌ها: ایکس اینترودو

مقدمه

در لابه‌های مولد پرتو ایکس، انزیم از لام چه تولید و شتاب دادن الکترونا به این بدل که اشک یک‌سیستم توسط

انرژی الکتریکی تأمین می‌شود. بدین منظور با برقراری بین کانال مغزی و آند مثبت اختلاف پتانسیل بالا و شتاب الکترون‌های حاصل از فیلامان کاردار برخورد آنها با آند اداسه عیش ایکس‌لیک می‌شود. در این لام‌ها سه علمی اساسی یعنی کیلو انتگریکتیک (عمل تعیین کردن فرد نفوذ یک کیفیت پرتو)، پیوندی آمپری (عمل تعیین کردن تعداد الکترون‌ها) و فوتوسنسیز (عمل تعیین کردن میزان که این علمی ضرورت شده در تعیین کردن کیفیت پرتو است) به عنوان شرایط ناپایدار شده.

کلید واژه‌ها: تولید پرتو ایکس، پیش‌نگه‌ی انتزاع الکتریکی به انرژی
ماجستی نوب پور - دکتر حسن مولداوات - محمد نوب پور

سطح آن و نیز نخستین تنشگی شود (6-8).

بدیل محدود بودن سرعت از دست رفتن حرارت در این
لامپها و کاهش مشکلات ذخیره‌سازی سازنده مولد
پرتو که محدود‌بوده یا را با کاربران تغییر کرده‌اند.

به عنوان مثال در مدل‌های پرتو ایکس درمانی در شرایط
10 000 میلی‌اکس که انتخاب کرده شد، به علت افزایش
شده‌ای بالاره فقط کمی کاهش کلی و آن امکان کیفیت است و
این محدودیت‌ها در کاربردهای تنخیصی مانند آنتی‌بیوتیک‌ها
نیز وجود دارد (0-4).

پروفسور ریکست یک روش پردازش در مورد سرعت از دست دادن حرارت،
به یعنی سازایی فیزیکی نیز ایجاد اندکی جنس
مکانیسم تنشگی که می‌تواند عصب‌پروری‌ها را در
عمق پیش بالاتر نشان دهد، صورت گرفته است (7).

مرکز تحقیقات کمیاپی و فیزیکی نیز این ایده‌ها از جنس
تمیدت و نیز در اثر کرده‌که در این طراحی همراه با
استفرار دو طرفه لیزرینگ شده آن، امکان افزایش حرمرط و
آن به همراه و سطح آن به میزان چهار برابر افزایش
شد است (8).

در تحقیقی که تا حال گذشته مورد حمایت
افزایش سطح لیزر را از جنس آنتی‌بیوتیک، افزایش
ساخت کل آنتی‌بیوتیک جنس آنتی‌بیوتیک لازم
دو هفته گذشته پنج میلی‌اکس شده تا یک آنتی‌بیوتیک سرعت خنثی شدن و بهبود آن کاهش تجمیع
حرارت در آن مورد امکان‌پذیر است. امکان انتخاب شرایط تناوب
بالاتر برای کاربردهای پزشکی فراهم کرده که بی‌خخصوص این
تکنیک در رادیوپژوهی و آنتی‌بیوتیک‌ها اهمیت ویژه‌ای دارد.

مواد و روش‌ها

آی‌آزی از کروم، مس و نقره برای ایجاد بند آن درک کار رفت.
چگالی این دراز به حدود 77 گرم بر سانتی‌متر مکعب و
نobody (4) 75 گرم کمتر از تنشگی است. این می‌تواند میکروفیزیکی
۱۱۱۵ سانتی‌متر مربع
۷۵ سانتی‌متر مربع (با سطح کانویی کل حدود
۱۴۰ ۷۴ سانتی‌متر مربع ساخته شد و
۲۳ سانتی‌متر مربع) مورد بررسی قرار گرفت. در مقایسه
۲۲ سانتی‌متر مربع) مورد بررسی قرار گرفت. در مقایسه
به آن‌ها معمولی که از دو پرتره استفاده می‌شود، برای

بررسی یک تونل‌افکن ازمایشی آند جدید مدل برتو ایکس به‌منظور کاهش محدودیت‌های...

شرايط یکسان، شعله دستگاه جوش پلاسمای که حرارت بسیار زیادی دارد به‌طور مجزا به محل هدف هر دو آند نصب شده تا دماي آنها تا 120 درجه سلسیوس افزایش یابد و بالا‌افلکه درجه حرارت با ترمو متر ماهیکی (در ازمایشگاه شرکت تیبا شیمی) اندازه‌گیری شد. آندها در حال دوران در یک محفظه با درجه حرارت اتاق کاشته و دماي آنها تا لحظه خشک شدن اندازه‌گیری شد. اندازه‌گیری بنا بر این داده‌ها می‌تواند باعث نسبت شود و به ابعاد 75 سنتمتر عایق بوس شد تا مانع جریان هوا شود و از دست رفتن حرارت نهایی به راه تشخیص صورت گیرد. این اندازه‌گیری‌ها به بار تکرار و میانگین و انحراف معيار نتایج محاسبه شد.

نتایج
بنده استنتاج‌های آدن از آبیا کروم، مس و نقره و رینگ لگه کاوشی از جنس نکستنکانی که در لبه داخلی استون ۳۳۱ تا ۳۵۱ درجه سانتی‌گراد در مقابل شده در شکل ۲ نشان داده شده است در مطالعه ما مساحت کل آند پیشنهادی ۱۲۴۵ سانتی‌متر مربع در نتیجه به ازای هر گرم اندازه‌گیری.

جدول ۱: نتایج حاصل از سپار اندازه‌گیری دمای آند های مورد بررسی و روند کاهش دما در زمان های پیک ناشی، بیشتر از گرم کردن آند‌ها

<table>
<thead>
<tr>
<th>زمان (دقيقة)</th>
<th>نحوه آند</th>
<th>معمولی</th>
<th>پیشنهادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۶۷۶±۲۵</td>
<td>۷۷۴±۳۰</td>
<td>۶۸۷±۲۸</td>
</tr>
<tr>
<td>۱</td>
<td>۷۱۳±۲۹</td>
<td>۹۰۸±۳۰</td>
<td>۷۴۲±۴۴</td>
</tr>
<tr>
<td>۲</td>
<td>۸۵۶±۳۳</td>
<td>۸۸۷±۳۰</td>
<td>۷۴۲±۲۳</td>
</tr>
</tbody>
</table>

اعداد داخل پرانتر تشان دهنه روند کاهش دما در زمان های مربوطه که از نتیجه حاصل از میانگین سه بر اندازه‌گیری دما محاسبه شده است.

شکل ۲: نمای داخلی بدن آند پیشنهادی و بخش‌های مختلف آن (راتا) و نمای خارجی (چپ)
نتایج بار انتقادگری‌های آندها تا لحظه خنک‌شدن کامل در شکل 3 نشان داده شده است.
منحنی‌ها با استفاده از میانگین نتایج انتقادگری‌های دما در فواصل زمانی 15 ثانیه رسم شده‌اند. بررسی نتایج نشان می‌دهد که تغییر منحنی‌های فوق به قصیرین در این است. به عضوی می‌توان نتایج میانگین و انحراف معیار انتقادگری دما و روند کاهش دما در این آندها در زمان‌هایی که تا دیده‌رفت در جدول 1 ارزان شده است.
روندهای کاهش دما در آندهای مورد بررسی متفاوت بود. در آندهای پیشنهادی، روندهای دما با سرعت بیشتری رخ داد و پس از حدود 20 دقیقه به طور کامل خنک شد در حالی که آندهای معمولی به حدود 50 دقیقه نیاز دارد تا به طور کامل خنک شوند (شکل 3).

برای آندهای معمولی) ولی با گذشت زمان سیر خنک‌شدن هر دو کاهش یافته (شکل 3). از طرف دیگر روند خنک‌شدن آندهای پیشنهادی از زمان‌های هنگام بررسی بالاتر از آن معمولی بود که این‌گونه معنی به از دست دادن حرارت به‌طور لیکن بعد از حدود 8 دقیقه سرعت خنک‌شدن آندها کاهش یافت (شکل 4). متوسط حرکت از دست دادن حرارت از شروع انتدازه که تا خنک‌شدن کامل در آندهای پیشنهادی حدود 73 درجه سلسیوس در دقیقه و در آندهای معمولی حدود 13/1 درجه سلسیوس در دقیقه بدست آمد.

بحث و نتیجه‌گیری
نردیکه بر سال‌های اولیه مولده‌های پتروپترو، می‌گذرد و نتایج تحقیق زیادی در مورد بهبودی تولید پروتئین ایکس به هدف بهبود کاربردی صورت گرفته است (14). ولی هنوز محدودیت کاربردی بسیاری وجود دارد که تکامل پژوهشگران در راستای کاهش این محدودیت‌ها ادامه دارد که غالباً مربوط به دقت و صحت حرارت و مولده‌ها و آنده شکل دهنده آن‌هاست (17-19).
پژوهش‌های مبنی بر روش‌های شیب‌سازی در مکان مورد بهبودی تولید پروتئین ایکس به‌طور کلی آن‌ها یافته‌ها درصدی سرعت از دست‌دادن حرارت آنده را نشان داده است (19). همخوانی، آن‌جودی ساختم ده تحت تظاهرات کیفی فلزات با توجه به افزایش به‌یافته محاسبات و دو برای جرم، تقیی‌سازی به‌وجوه افزایش در برای سرعت از دست‌دادن حرارت در آن‌ها شده‌ است که این نسبت افزایش یافته فقط ناشی از افزایش محاسبات و جرم است. زیرا جنس آن در این نوع تغییر داده نشده‌است (8). در تحقیق ما طراحی آن‌ها یافته‌های پیشنهادی بوده که علاوه بر تغییر جنس آن‌ها، ایجاد افزایش سطح ترود آن‌ها نیز فراهم شده. نتایج خنک‌شدن و روند آن در زمان‌های مختلف، در مقایسه با آن‌ها معمول در

نتایج بررسی روند خنک‌شدن آندها بر حسب دهجه سلسیوس بر دقیقه در زمان‌های مختلف در شکل 4 ارائه شده است. روند خنک‌شدن آندها در ابتدا به سبب بالا بوده (در حدود 180 درجه سلسیوس در دقیقه) برای آن‌ها پیشنهادی و 76 درجه

شکل 4: منحنی روند خنک‌شدن آندهای مورد بررسی در مطالعه حاضر

شکل 3: منحنی خنک‌شدن آندهای مورد بررسی در مطالعه حاضر مختص

شکل 1: منحنی در تحقیق حاضر و آن‌ها معمولی در مطالعه حاضر

شکل 2: منحنی در تحقیق حاضر و آن‌ها معمولی در مطالعه حاضر

شکل 3: منحنی در تحقیق حاضر و آن‌ها معمولی در مطالعه حاضر

شکل 1: منحنی در تحقیق حاضر و آن‌ها معمولی در مطالعه حاضر
بررسی یک تغییر آزمایشی آنده جدید مولد برتو ایکس به‌منظور کاهش محدودیت‌های...

شکل‌های ۳ و ۴ ارائه شده است. بررسی نتایج در مدت ۲۰ دقیقه اندک‌گیری نشان می دهد که بطور متوسط، دماً آنده پیش‌نهادی در حدود ۸/۸ برای کمتر از دمای آنده تنداز است. پیش از این، تاثیر سطح مغناطیس بررسی و مشخص شد که کاهش حرارت آن به‌طور مستقیم به سطح آنده پیش‌نهادی داده (۱). در تحقیق مانند هم‌سازی سطح و جنس آنده در زمان‌های مختلف بررسی شد که بررسی نتایج متفاوت‌های ماذگری بطور مجزا از محدودیت‌های آنده پیش‌نهادی محصول می‌شود. در مورد بقیه پارامترهای تاییدگذار سعی شده که برای هر دو آنده، شرایط بسیاری فراهم شود. بررسی نتایج سپر خنثی‌کردن آندها در زمان‌های مختلف نشان داد که بخصوص در زمان‌های اولیه، سرعت از دست دادن حرارت افزایش و معنا دار آن تغییر حرارت در لامپ کاهش می‌یابد (شکل ۴). با این حال، آنده پیش‌نهادی می‌تواند تغییر آنده در زمان‌های مختلف شده باشد. این روش برای حرارت مولد برتو ایکس مرتبط با افزایش و توجه به دقت و قابلیت افزایش پایه است. در این تحقیق بدن آنده از آلیاژ کروم-مس و فروره با چگالی حدود ۷/۷ گرم بر سانتی‌متر مکعب انتخاب شد که

متبَع


مجله دانشگاه علوم پزشکی کیان/دوره بیستم/شماره ۲۹/پاییز ۱۳۹۰


Assessment of a Tentative Novel X-Ray Anode in Decreasing its Applicability Limitation in Medical Practices

*Navvabpour M.(M.Sc) 1- Moladoust H.(Ph.D.) 2- Navvabpour M.(B.Sc) 3

*Corresponding Address: Department of Radiology, Faculty of Para- Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IRAN
E-mail: mnnavabpour@yahoo.com

Received: 3/Jul/ 1010 Accepted: 18/Feb/2011

Abstract

Introduction: More than 99% of electrical energy in diagnostic X-Ray tubes converts to heat. This process causes limitation in medical applicability especially in higher intensity for diagnostic and treatment purposes.

Objective: To decrease the applicability limitation in x-ray generation via higher cooling rate

Materials and Methods: In this study, a novel anode was proposed with special geometric design and use of new materials in order to obtain higher cooling rate. In doing so, a conventional anode with 9 Cm diameter and 127 Cm2 area, was compared with the proposed anode made of an alloy of chromium, copper and silver with 27 Cm diameter and 1145 Cm2 equipped with a tungsten ring in the same condition. Both anodes were placed inside a container without air flow and heated up to 1200 °C using a plasma flame. Then, the anode temperatures were measured and recorded during cooling using a contact thermometer for three times and finally means and standard deviation and also the respective cooling rates were calculated.

Results: In both anodes, the cooling modes were exponential but the cooling rates were respectively different, (approximately 180 °C/min for the proposed anode) and (approximately 76 °C/min for the conventional one) at 1200°C.

Conclusions: In comparison with the conventional anode, the proposed anode has higher strength and higher cooling rate. Therefore, it can lead to lower limitation in selecting exposure factors such as mAs and kVp in medical practices.

Key words: Electrodes/ X-Rays

Journal of Guilan University of Medical Sciences, No: 79, Pages: 8-14

1. Department of Radiology, Faculty of Para- Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IRAN
2. Department of Medical Physics, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, IRAN
3. Department of Metallurgy, University of Sciences and Technology, Tehran, IRAN