بررسی امکان سنگی قابلیت تجزیه بیولوژیک مغز ترشیاری بوتیل اتر (MTBE) توسط میکرواراگانسم‌های جدا شده از لجن‌های فعال در فاز مایی و تأثیر ترکیبات محیطی القایی بر میزان تجزیه بذیری (Ph.D)

مهندس سامان احمدی زاده
1- گروه محیطی، دانشگاه تربیت مدیری، گروه بهداشت محیط
2- دانشگاه علوم پزشکی گیلان، دانشگاه بهداشت. گروه بهداشت محیط
Ahmadizade2000@yahoo.com
تاریخ دریافت مقاله: 8/11/1395
تاریخ انتشار: 8/12/1395

چکیده
مقدمه: میکرواراگانسم‌های تجزیه بیولوژیکی MTBE (YP) باعث کنترل دردسریشی شده‌اند و بدون درک اکسیون، تجزیه این الکل و گازهای آلکلی بیولوژیک مغز ترشیاری بوتیل اتر MTBE در فاز مایی را حل می‌کنند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گردیده‌اند که این الکل و گازهای آلکلی بیولوژیکی MTBE در یک فاز مغز ترشیاری بوتیل اتر (YP) باعث کنترل دردسریشی گر
ابن ماده اولیه در اواخر دهه 1970 در گل‌گیری تقریباً 2-3 درصد حجمی در ایالات و آمریکا تهیه شد و در ایران نیز از سال 1376 به بعد مصرف آن افزایش یافت. میزان تولید آن در هیچ‌سفارتخانه دیگر بر پایت سیالین تَن بوده که دلیل عدم استفاده از آن افزایش عدد اکتان و حذف سرپ از سوخت های است(3). این ترکیب همچنین به دلیل ارزانی، سادگی تولید و اختلاف مطلوب با نیزین معمولی، بر دیگر مواد اکسیده‌دار ترجیح داده شد(42). مهم‌ترین مشکلات ترکیب MTBE شامل پاک‌سازی بودن آسانت هم و یو، نفوذ سریع به منابع آب زیرزمینی و حل‌آلات بالا. مشکل حذف در گل‌گیری های کم در روش‌های متفاوت تصفیه آب و ایجاد خطرات بهداشتی بالقوه از برای این‌سان و سایر موجودات زنده است(63). MTBE تا حدی که سازمان حفاظت محیط زیست آمریکا را در فهرست آن‌نشده گزار ترکیبات احتمالاً سرطان‌زا برای انسان قرار داده است(64). این ترکیب تا گل‌گیر در میلیون تومان سیالین اضافی حالت بیشتری را ایجاد کرده است. اما روش‌های رایج تر حذف از MTBE آب‌های آشامیدنی شامل هواداره (آزادی تولید هوایی) یا جدای سطحی جذب عمیق، کناداسیون، اکسیداسیون خارژنی، اکسیداسیون تولید اولتراوولتن، پرتوافکنی اولتراوولتنی و روش‌های مختلف اکسیداسیون پیشرفته از اشتهار نموده‌اند. اما روش‌های رایج تر حذف از MTBE آب آشامیدنی شامل هواداره (آزادی تولید هوایی) یا جدای سطحی جذب عمیق، کناداسیون، اکسیداسیون خارژنی، اکسیداسیون تولید اولتراوولتن، پرتوافکنی اولتراوولتنی و روش‌های مختلف اکسیداسیون پیشرفته از اشتهار نموده‌اند.
بررسی امکان سنگین قابلیت تجزیه بیولوژیک مدل ترشیاری بوتیل اتر (MTBE) توسط... (دوام همراه با گونه‌های خاصی از باکتری‌ها با باکتری‌ها که به صورت طبیعی تحت شرایط هوازی چادسازی شده‌اند، تصفیه شده‌اند، اما رشد باکتری‌ها کم و با محتوای پایین از توده سلولی همراه است) (24) این مطالعه به مظور بررسی قابلیت تجزیه MTBE توسط میکروگانیسم‌های چادسازه از لحی نمازی تأثیر تیکیپات با اثر اولین دریافت تجزیه آن در سال 1385 در گروه بهبودبخشی دانشگاه تربیت مدرس صورت گرفت.

مواد و روش‌ها

- تیپ و عناصر از بوتیل‌های تیپ و محیط کشت حاوی محلول TSA و محیط پایه با محیط کشت حاوی محلول TSB نمک‌های مناسب تربیت. محیط کشت‌ها شامل MTBE و محیط وابسته به محیط مایع اساس دستورالعمل کارخانه سازنده که عموماً کارخانه‌ای (CARLO ERBA) و کارلو اربا (MERCK) بودند. تیپ پایه. قابل ذکر است که هر آگار مورد استفاده در ساخت محیط کشت‌ها گلوکز 1/5 درصد بود. همچنین با توجه به ساختار محیط، تکیه و میزان مواد مصرفی در محیط محلول نمک‌های مناسب مورد استفاده قرار گرفت (24).

- محلول MTBE مورد استفاده در آزمایش‌های که به عنوان محلول ذخیره استفاده شد. از کمپانی مرک کمال به روش تجاری 99/9 درصد خلوص بوتیل و وزن مکمل به آن می‌رسد.

- - ماکروبی‌ها و تیپوگرافی با
- پس از انوکه درون و بالا
- MTBE
- و 1 سی‌سی سوپرسانس میکروی تزریق شد.

- روش اندازه‌گیری:

- اندوزه‌گیری غلظت - آنتیز MTBE
- و محصولات - اندوزه‌گیری غلظت

- هیدروپلیزی احتدامی از مشخصات باعث در وارد و بالا

- با تزیین ممکن است.

- در آنالیز

- 0.3mm id, 0.6 m film of bonded (Fused Silica Capillary, 50cm×dimethylsilicon gum فیلیپس، مدل PU-14100)

- و اشکال‌هایی از شفاف (FID) استفاده شد.

- تعیین غلظت از منحنی غلظت استاندارد محاسبه شد.

- - روش تکنیکی: در این تحقیق به ویژه از منظور شناسایی

- باکتری‌های تجزیه‌گر از مخلوط میکروبی از روش-

- روش میکروبی گرم بهره‌گیری شد.

- - تیپ و جداسازی میکروگانیسم‌های لحی و خاک: نمونه

- لحی مطالعه از تیپ‌های متفاوتی و شکل قید در خاک، تبلیغات آب و

- شکل قید در خاک و تیپ‌های فیبری. ین ایجادی، تیپ‌های

- متی و تجزیه رشته. به دست آمده و نمونه‌های فیبر

- از برخی یکی در نظر گرفته و شهرستانها جمع

- آور شد.

- - تیپ و استخراج پت هوامیک در آزمایشگاه: استخراج استم

- هوامیک از خاک در آزمایشگاه با استحکام دستورالعمل

- انجمن بین‌المللی مواد هوامیکی (صورت

- پذیرش (16).)

- - عناصر مخلوط: عناصر مخلوط پذیرفته است که به

- MTBE تحقیق حاضر مورد استفاده قرار گرفت است.

- روش اندازه‌گیری:

- مقادیر میکروبی و تیپوگرافی با

- پس از انوکه درون و بالا

- MTBE و 1 سی‌سی سوپرسانس میکروی تزریق شد.

- محقق
مهندس سامان احمدی زاد - دکتر علی خواین - دکتر مهرداد فرخی

تلخیچ میکروپی در کشت های بعدی، از نمونه‌های مقاوم در TSB تا وحیده به بزرگ‌ترین نسبت TSB دسترس پایداری. غلظت‌های نسبت TSB ۰.۱ و از نتیجه در سری‌های مختلف در ویال از نظر تیتر تغییر داده و نتایج بالاها به نتایج خواین در حوزه بهترین مفهومیات، ویال‌ها به نتایج واریانس در دسته آزمایشگاه (۲۵°C) روش شیشه با دور ۱۰۰۰ قرار داده شدند. به مدت دو هفته عمل شیشه ثانی (نکان دادن) ادامه داشت و طی این مدت تمام ویال‌ها به نتایج روزانه و گاهی در هر روز یک بار از نظر انداز دندان تولیدی به نتایج شد (ویال‌های عادی میکروگاه تا TSB) و میزان کاهش MTBE (در ویال‌های عادی میخ کشت TSB) توسط آمپیز با MTBE در نتایج شد.

دستگاه GC بررسی شدند.

پس از گذشت ۱۲ روز براساله کشت تولیدی، ویال‌ها از نظر واکنش‌هایی کاملاً عدم واکنش‌پذیری با واکنش پیشنهادی مورد بررسی قرار گرفتند. پس از این که در محلول اول که از غلظت ۱ گرم در لیتر مقاوم سازی آغاز شد، میکروگاه‌ها توانستند غلظت ۱۵ گرم در لیتر در برای MTBE مقاوم شوند. مراحل بعدی مقاوم سازی به نتایج دستیابی مقاومی میکروپی در غلظت‌های بالاتر از ۱۵ گرم در لیتر MTBE آغاز شد، بدین صورت که از ویال‌های سری قبل، بالاترین غلظت (مانتلا) را انتخاب نموده و عمل مقاوم سازی روز میکروگاه‌ها آن صورت پذیرفت. در اصل آخرين ویال مقاوم به منظور یافتن آن است که میکروگاه‌ها توانسته‌اند نتایج در محلول میخ کشت TSB رشد کرده و زندگی مانند، از این روز پس از انتخاب ویال‌ها کشت‌های مراحل بعدی با همین روش انجام شد و غلظت‌های بالاتر از ۵۰ گرم در لیتر برای MTBE مقاومی سازی بریت استفاده شد. به همین موانئ به نتایج

مجله دانشگاه علوم پزشکی گیلان/ دوره هفدهم/ شماره ۶۶/ تابستان ۱۳۸۷ ۷۹
بررسی امکان ستیز تجزیه پیلولیزیک میلتریشیاری بوتیل اتر (MTBE) توسط...

غذای مورد نظر رشید میکوراتیپیس‌ها فراهم آید به این تفاوت که در این اینکار، محتوای گازی از منبع کربن بوده و نه میکراتیپیس‌ها موجب استفاده از تجزیه آن می‌شوند. برای کشت‌های میکروبی درون پلت‌ها، نمونه‌های لجن فاضلاب و خاک به ایندا مقاوم‌سازی شده و سپس تجزیه‌گر شده بودند. انتخاب شده و به منظور مقایسه و کنترل، دو نمونه شاهد می‌باشد. به ازای هر نمونه در پلت کشت حاوی حیطه آگار و در پلت کشت حاوی حیطه آگار نه شد. همکاری ۲۴ کشت میکروبی نه شد و هر نمونه هم شاهد بودند. سپس با فاصل زمانی معین (۶ ساعت یک بار) پلت‌های کشت داده شده از نظر نشانگر کلی و رشد میکوراتیپیس‌ها بررسی شده و هر دو روز یک بار با پاز کردن در محیط فضای استقرار پلت‌ها (اکسیژن مورد نیاز میکوراتیپیس‌ها تأمین شده و ۱۰۰۰ میلی‌گرم در لیتر به عنوان منبع کربن و انزیم به ویژه MTBE نیز به عنوان منبع از تکامل به ویژه MTBE شده درون جار اضافه شد.

نتایج

بیان‌های مربوط به الگوهای دام، بالا و پایین در طی فاصله میکرو‌سیستمی می‌باشد. میکرو‌سیستمی نمونه‌های مختلف MTBE در محیط‌های حیطه‌ای می‌باشد. لازم به ذکر است که میزان مقاومت میکوراتیپیس‌ها در نمونه‌های مختلف MTBE (A,B,D,E,F) نشان داد که میکوراتیپیس‌های حاصله MTBE می‌توانند در برابر غلظت بالایی از مقاومت کندین و این خود اولین قدم برای درک‌بای ابزار بی‌تجزیه پیلولیزیکی است. نشان داده شده است.

جدول ۱: مقاومت نهایی میکوراتیپیس‌ها در برایNRبی‌تجزیه پیلولیزیکی

<table>
<thead>
<tr>
<th>نمونه</th>
<th>مقاومت (mg/L)</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۳۷۰۰۰</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>۴۴۰۰۰</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>۳۳۰۰۰</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>۳۳۰۰۰</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>۳۳۰۰۰</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>۳۳۰۰۰</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱ نیز نمونه‌هایی از کالی‌های شیری رشد کردند در سطح آگارز و آگارد را در نمونه‌های مقاوم به MTBE نشان داد. این نتایج از اینکه روش تجزیه پیلولیزیکی در برابر و کنترل نیز نشان داده شده است.

برای انجام تجزیه MTBE توسط مواد مصرفی مرکز تقاضای محصولات خصوصی MTBE توسط عصاره معمر و پت هومیک: برای بررسی

بررسی این تجزیه‌پذیری تجزیه (مصرفی معمر و پت هومیک) برای بررسی اثر MTBE توسط عصاره معمر و پت هومیک از هر کدام ۳ رفت تهیه شد و پس از استریل کردن همگام با تجزیه MTBE ۱۰۰۰mg/L از آنها نیز استفاده شد. غلظت‌های تهیه شده عصاره معمر پرای
نمودار 1: راندمان حذف با استفاده از سویه‌های تجزیه‌گر MTBE

نمودار 2: نمودار داده شده است.

نمودار 3: میانگین مقاایسه تجزیه MTBE در غلظت 1000 میلی گرم بر لیتر توسط سویه‌های تجزیه‌گر MTBE به ترتیب با اثر سویه‌های MTBE در حضور عصاره متخلخل + پت هومیک در تریک تجزیه‌پذیری TSA و بیلیار با اثر MTBE در حضور عصاره متخلخل + پت هومیک در حضور عصاره متخلخل در غلظت 1000 mg/L در TSA شدت نشان داده شده است.

نمودار 4: نمودار داده شده است.

نمودار 5: دانشگاه علوم پزشکی گیلان، دوره هفتم/ فصلنامه/ شماره 64/ تیر 1387
بحث و نتیجه‌گیری
با توجه به نتایج حاصل حداکثر میزان مقاومت میکروگانیسم‌های جدا شده از لجن‌های غزال تصفیه‌خانه‌های فاضلاب شوش، ایوانان، شهرک قدم، نمونه خاک باقی‌مانده و خاک‌های آلوده و در معرض MTBE مربوط به نمونه B بود که میزان آن 24400 mg/L بود. متوسط میزان مقاومت میکروگانیسم‌ها (در هر 5 نمونه) برای با MTBE در میزان 500 میلی‌گرم در لیتر تا 89 mg/L بود. همچنین نتایج حاصل از تحقیق Eweis (میزان داد که تجویز MTBE پس از 152 روز زمان عادت به محیط بیولوژیکی MTBE امکان پذیر است.) با توجه به نتایج حاصل از تجویز بیولوژیکی غلفت‌های 180 mg/L و 700 mg/L محیط کشت تجویز‌های با محیط بایه و همجینگ براساس مشاهده TSB راندمان‌های حذف در گروه‌های مختلف نمونه و رقتهای چیز انتساب شد که راندمان حذف نمونه TSB همگی در رنگ و محدودی خاصی هستند(25-20 درصد) بین از حد بالاتر نفرین و علت آن وابستگی MTBE شدید میکروگانیسم‌های تجویز‌گر به اکسیژن محیط رشد است. زیرا این میکروگانیسم‌ها کامل‌اً هوازی بوده و تحت تأثیر غلفت اکسیژن محلول در دسترس هستند و اگر میزان اکسیژن محلول در محیط رشد میکروگانیسم‌های تجویز‌گر کمتر از 9 mg/L می‌باشد.
محلول نمک‌های معدنی در گللت‌های MTBE کاهش می‌یابد و نیاز به توجه ندارد.

گفت که مصرف می‌شود. این تابی به تجربه حاصل از تحقیق و همکارانش (سال ۲۰۰۴) که تجزیه بیولوژیکی هوای اکسیژن‌های تنزین و MTBE و RA TBA و در سرمایه‌داران به سمت داده هم‌خوانی دارد (۱۹). این تابی Marc مشابه تجربه تحقیقات است که Xiaolin Wang داشت.

شاید دو نتیجه زیر را می‌توان در خصوص کاهش از حجم گرفته‌ها MTBE نشان دهد:

- تغییر مسیر مایع‌پیمای بی‌ای دیده در بی‌ای تجزیه MTBE تولیدی به دلیل تجزیه‌پذیری راحت آن که کاهش جمعیت مایع‌پیمای بی‌ای آن به علت افزایش غلظت را می‌تواند به عنوان یک عامل محدودکننده رد شود.

- همچنین در ادامه مطالعات بررسی تأثیر همبستگی پیژندگی در MTBE در غلظت ۱۰۰۰ mg/L

منابع

بررسی امکان سنتی سبزی از تجزیه بیولوژیکی مانیتوری پارتیکل اتر (MTBE)

Survey The Possibility of Biodegradability of Methyl Tert-Butyl Ether (MTBE) by Isolated Microorganisms of Activated Sludges in the Aqueous Solutions and Effects of Stimulator Substances on Biodegradation

Ahmadi z S.(MSc)1- *Khavanin A.(Ph.D)1- Farokhi M.(Ph.D)1

*Corresponding Author: Environmental Health Department, Tarbiat Modarres University, Tehran, IRAN
E-mail: Ahmadizad2000@yahoo.com

Received: 10/Dec/2007 Accepted: 06/Apr/2008

Abstract

Introduction: Methyl tert-butyl ether (MTBE) has been incorporated in reformulated gasoline at concentrations up to 15% (vol) to replace lead tetraethyl in order to comply with the octane index and to reduce the polluting emissions in exhaust gases. This compound is water soluble (48,000 mg/L) and one of the most common pollutants of ground water and surface water. Because of its undesirable effects on drinking water and ecologically harmful effects, MTBE removal has become a public health and environmental concern.

Objective: Evaluatin of biodegradability of MTBE by isolated microorganisms from activated sludge.

Materials and Methods: In this study a microbial consortium that efficiently degraded methyl tert-butyl ether was obtained by isolated microorganisms of Activated Sludges in the Aqueous Solutions. Microorganisms were isolated from a variety of sources, generally from petroleum or chemical and urban wastewater treatment plants. All experiments were conducted at a constant temperature of 25°C. Vials of 50 ml and 125 ml volume sealed with Teflon-lined Mini-Nert caps were used for microcosm experiments. In all experiments 1% sodium azide were used as controls. Cultures were incubated at 25°C in the dark on an orbital shaker (rotation speed of 150 rpm). The mineral medium was used for batch cultures. Samples of bacterial cultures that metabolize MTBE have been analysed for both MTBE and its metabolite TBA by direct GC analysis using FID. Cultures able to metabolize MTBE have been found in activated sludge and soils. Microbial consortium were plated on agar with MTBE vapor as the carbon source. After three weeks growth to saturation, independent clones were diluted into fresh mineral medium. This microorganisms, was a gram-positive bacterium. An aerobic microbial consortium able to biodegrade methyl tert-butyl ether (MTBE) was enriched in laboratory for four months.

Results: MTBE has been shown to biodegrade under aerobic conditions and cometabolic conditions. Clearly, aerobic biodegradation of MTBE is demonstrable. In our laboratory, a microbial consortium was isolated from activated sludges based on its ability to grow on MTBE and was identified as cocobacillus. The capacity of this microbial consortium to degrade and grow on MTBE as a sole carbon and energy source is described in this paper.

No biomass aggregates were observed during all the batch cultures, but the attached biomass was observed (the concentration of the initial attached biomass was about 0.11 g/L of dry weight). 500 mg of yeast extract per liter and 20 mg of Peat humic support growth of microbial consortium, it clearly had a stimulatory effect on consumption upper than 20%. Consortium was capable of degrading concentration as great as 1000 mg/l MTBE, whereas concentrations of 1000 mg/l MTBE and higher was not degraded.
Conclusion: MTBE in low concentration is biodegradable and biodegradability of MTBE enhanced by stimulator substances.

Key words: Methyl Tert-Butyl Ether (MTBE)/ Biodegradation/ Sewage

Journal of Guilan University of Medical Sciences, No: 66, Pages 76-86