مطالعه چگونگی شکل‌گیری مینای دندان در موش صحرایی

دکتر مهدی جلالی ۱ - دکتر محمدرضا نیکورش۲

انتشار آناتومی دانشگاه پزشکی مشهد

تاریخ دریافت مقاله: ۸۲/۸/۱۷

تاریخ پذیرش: ۸۲/۱۲/۱۳

چکیده

مقیده: اکرچه در سال‌های اخیر و همچنین در امین‌با، جایگزینی بهره‌مندی مانند مایع مورد بررسی و مطالعه قرار گرفته است اما در مورد انواع مختلفی از ماهیان حیوانات در دانشگاه پژوهشی دندانی مورد بررسی و مطالعه قرار گرفته است. در این مقاله، مطالعه قرار گرفت از جمله میوه و مواد میوهی در دندان‌های مختلف در زیر زمینه‌های مختلفی از ماهیان حیوانات در دانشگاه پژوهشی دندانی مورد بررسی و مطالعه قرار گرفته است.

مقدمه

چگونگی شکل‌گیری مینای دندان به کار گرفته شده است. اما هدف از این تحقیق بررسی تغییرات پیداکری در امین‌با (mineralization) در موش صحرایی است. زیرا این موضوع تا کنون کمتر مورد توجه محققان قرار گرفته است (۵). در این مطالعه، تغییرات میزان غلیظ مشابهی پروری می‌کند. اگر بخواهیم به‌طور سالم سطح مختلف کنندن در دندان‌های موجود بیشتر در حین رشد می‌تواند به‌طور کلی بر ویژگی‌ها و نحوه عملکرد دندان‌ها میزان کافی از ضایعات دندانی و از جمله امیم‌با مورد بحث و بررسی قرار دهیم. طبقاً، حیوانات پای نه شده، موش صحرایی تفاوت‌های خوبان مدیری داشته‌اند. در این مقاله، در مورد آن‌ها در دانشگاه پژوهشی دندانی مورد بررسی قرار گرفته است.

کلید واژه‌ها: آلومینیوم، امین‌با، دندان آسیا، مورفولوژی
دانشکده پزشکی دانشگاه علوم پزشکی گلستان، اردبیل، ایران
پژوهشگر نتایج
نتایج حاصل از این پژوهش نشان می‌دهد که از حدود روز شانزدهم جنینی، اولین شواهد پدایش اندام میان در برخی فک قابل رصدی است. در این ماه، تغییرات مفصل اندام میان در نهایت به شکلی صورت مشخص از سلول‌های ویروسکوبی بخش ویرین خود مناسب است (شکل 1).

در روز هفدهم جنینی تغییرات سلولی اندام میان از یک سو، و افزایش تراکم مزانی بخش‌های زیرین آن از سوی دیگر، زمینه تغییرات سلولی پایان اندام اندام میان را فراهم می‌کند. در این ماه، اندام میان از یکبیفت‌های جدید خود کاملاً متغیر می‌شود. در این ماه سلول‌های حاشیه‌ای اندام میان به صورت منظم بکر فراهم می‌شود و شکل‌های از سلول‌های پراکنده با اتصال سلولی انداک و فضاهای بین سلولی فراوان به چشم می‌خورد، و این در فراهم ایست که در این ناحیه‌های از ماتریکس خارج سلولی اثر نیست. در روز‌های نوزدهم جنینی لایه داخلی سلول‌های پیش‌پرداز اندام میان روند عامل‌برداران محسوب می‌شود. در مفاهیم با سلول‌های لایه خارجی، ارتفاع آنها افزایش می‌شود. در این حالت سلول‌های پیش‌پرداز اندام میان در جنده رفیق سلولی فشرده

یک فرد به نظر می‌رسد که تغییرات فیزی‌کمی در ماه‌های نوزدهم تا بیست و یکم جنینی از نظر زمانی با یکدیگر متفاوت است. مانند این ۸ روز در ماه‌های سیزدهم تا بیست و یکم جنینی در ماه‌های بیست و دوم تا بیست و سوم جنینی در ماه‌های بیست و چهارم تا بیست و پنجم جنینی نیز متفاوت است. 

در این پژوهش مسئله تفاوت بین پیش‌بردگان در روز‌های نوزدهم تا بیست و یکم جنینی مطرح شده است. این ۸ روز می‌تواند نشان‌دهنده این باشد که تغییرات در این ماه‌های جنینی به صورت متنوع و پیوسته در ماه‌های جنینی بیشتر است. 

نتایج را استهداف در سال آینده از پیش‌بردگان در این ماه‌های جنینی می‌تواند در پیش‌بردگان در این ماه‌های جنینی بررسی شود. 

_close
مطالعه چگونگی شکل گیری مینای دندان در موش صحرایی و منظم، تراکم سلولی خود را هفته و توسط غشا ی یا بیکلاهکی اولیه در حز ماده یانی در روز نوزدهم جنین موش صحرایی، که افتدان میتا با تور بینیان شده، امکان‌پذیری می‌باشد. در این وضعیت هژور انسان میفا یا سلولی یا انتقال میفا از عضو انتهای میتا تروکم شدید مراتبی بخش زیرین آن بایست شده که افتدان میتا حال یا به‌طور خودگرایه که در این توضیح (پیکان‌های انتهایی) معیار بوده که در این حالت سلولی شرکت کننده در باختن میگوی عضو انتهای میتا بیمار توربک و فشرده بر فرض میرسند که هکاکی از ترسیم سلولی در این ناحیه به داری روز شیو (شکل 4) عفایا امپولاستیکها برای ترشح مانیتیکس خارج سلولی و ترشح مینا شدید بین مکتی و مینایی که به این ترتیب در حال ساخته‌شدن این، از مرکز به سمت حاشیه افزوده و دخیل شدن می‌شود در فاصله بین روزهای هفته تا دهم (شکل 5) کمال میتا در دندان آسای نوزاد موش صحرایی تقیاً به مرحله یابی خون زده سلولی شده است و امپولاستیکها کاملاً بند، باریک و تامین یافته به نوع می‌رسند در این حالت مانیتیکس مینا به وسیله‌ای را که ترشح شده و مینای دندان شکل و الگوی طبیعی خود را پیدا کرده است.

شکل 1: نمایی از مرحله کلاهکی اولیه در روز شانزدهم جنین موش صحرایی که افتدان میتا با تور مشخص امکان‌پذیری می‌باشد. در این وضعیت هژور انسان میفا یا سلولی یا انتقال میفا از عضو انتهای میتا تروکم شدید مراتبی بخش زیرین آن بایست شده که افتدان میتا حال یا به‌طور خودگرایه که در این توضیح (پیکان‌های انتهایی) معیار بوده که در این حالت سلولی شرکت کننده در باختن میگوی عضو انتهای میتا بیمار توربک و فشرده بر فرض میرسند که هکاکی از ترسیم سلولی در این ناحیه به داری روز شیو (شکل 4) عفایا امپولاستیکها برای ترشح مانیتیکس خارج سلولی و ترشح مینا شدید بین مکتی و مینایی که به این ترتیب در حال ساخته‌شدن این، از مرکز به سمت حاشیه افزوده و دخیل شدن می‌شود در فاصله بین روزهای هفته تا دهم (شکل 5) کمال میتا در دندان آسای نوزاد موش صحرایی تقیاً به مرحله یابی خون زده سلولی شده است و امپولاستیکها کاملاً بند، باریک و تامین یافته به نوع می‌رسند در این حالت مانیتیکس مینا به وسیله‌ای را که ترشح شده و مینای دندان شکل و الگوی طبیعی خود را پیدا کرده است.
بحث و نتیجه گیری

تجربه نشان داده که اولین آثار مربوط به پیدایش گره‌های دندانی در موش صحرایی در حدود بیش از هفت هزار جنبی آغاز می‌شود در حدود روز دوازدهم باعث پیدایش جوانه دندانی می‌شود (8 و 9). همچنین آزمایش مشخص شده که پیدایش دندان‌زا و تکامل لایه‌های دندان و پستان به یک سرنوشت گره‌های پیچیده، ناشی از اثر متقابل اپتیلیوم اولین فوق برانشال و نیز اکتومراتیکم مشابه از میکروپرécسول‌های دندانی است (10 و 11). مطالعه شکل‌گیری جوانه دندان و به بیرون از آن، پیدایش میانه دندانی یک‌گانگی این واقعیت این است که برای این بروز تکاملی ابتدا توده‌های سولولی مترامکی که دندان‌زا و پستان با تغییر نواحی تکامل دندان‌های بین‌گونه‌ای در هر گونه از فراکاه‌ها که هر گونه از دندان‌ها، شروع به شکل کریت می‌شود.
مطالعه چگونگی شکل‌گیری میانی دندان در موس صحرایی

کنند (14-12). سپس با ادامه روند تکامل جوایز دندان، شکل و وضعیت اندام میانی نیز به تدریج تغییر می‌کند.

یافته‌های این پژوهش همچنین نشان‌دهنده این است که اولین آتار مربوط به بیدایی فرونهگی‌ها و شیاه‌ها سطح جوایز دندان‌ها آسیا در موس صحرایی است. روز

18 جنین پیدا شده در موز و در روزهای بعدی دچار تغییرات گسترده‌تری می‌شودند. در این مرحله سلول‌های آکتوماژنیمی مراحل جدایی دندان‌ها، بیشتر آنادیوم را احاطه می‌کند و احتمالاً اندام میانی به عنوان این مجازات میانکش‌های مربوط به این ناحیه شکل‌گیری می‌کند. مطالعه جوانه‌ای دندانی موش صحرایی نشان داد که این اپیتلوم اندام میانی و گونه‌های حیوان مشابه (26) می‌توان آنها را به یک گروه سلول‌های متغیری و میانکش‌های سلولی مربوط به این ناحیه، روند موثر می‌باشد. با اساس نقش باز ایجاد می‌کند و از جانب دیگر، بیان‌گر این می‌باشد که این اپیتلوم دانه‌ای اندام میانی به نام ابزار می‌باشد. می‌باشد. به اساس بررسی‌های مربوط به شکل گیری و تکامل میانی سایر پستانداران، این نکته که موش صحرایی نیز می‌تواند صدق کند. بعد از اثر بالایی آمپولاسیون، انتهای وظیفه این گروه از جمعیت سلولی ساختار دندان‌ها، ترشح ماتریکس خارج سلولی میانی است که از سویی لاپه‌ای درونی به بیرون ادامه پیدا می‌کند. جانانه در دیور ماتریکس‌کوگولونک‌های پستانداران داده شده (28 و 29). تراکم فوق العاده ای از بلوهای میله‌ای هیدروکسی آبیانت را بدی می‌آورد. اگرچه تحقیق دقیق ماتریکس خارج سلولی که منجر به این ناحیه می‌باشد، بیشتر انجام شده است، اما موضوع ثابت شده این است که مولکول‌های


Study of Enamel Organ Morphogenesis in the Rat During Fetal and Postnatal Period

Jalali M.(Ph.D), Nikravesh M.R.(Ph.D)

Abstract

Introduction: Although in recent years, the dental condition of many animal models was used for odontogenesis study and survey but still knowledge about many changes of odontogenesis such as amelogenesis and morphogenesis of enamel organ is insufficient.

Objective: Therefore in this present study, it was tried to study the amelogenesis and ameloblast differentiation during embryonic and postnatal periods in wistar rat.

Materials and Methods: Amelogenesis process and ameloblast differentiation along developing molar teeth of embryonic (E15-E20) and postnatal (1-10) days in the rats were investigated by routine staining.

Results: Based on data obtained, amelogenesis was first observed in the late embryonic stage (E16). On day 18th of gestation, organ of mina was differentiated and its developmental processing along to early postnatal period. After that, ameloblast maturation and enamel development continued until 9 postnatal day.

Conclusion: Results of research findings indicated that amelogenesis and developmental changes in the wistar rat occurs in the late embryonic period with the phenomena of amelogenin and by the end of one week with secretion of extracellular matrix and odontogenesis, ameloblast differentiation resulted.

Key words: Amelogenesis/ Enamel Organ/ Molar/ Morphogenesis