بررسی حذف فتوکاتالیستی دیاژیتون توسط نانوذرات دی اکسید تیناکیوم از پساب

ستنیک

(PhD) و (PhD) دکتر مهدی فرزادی(1) دکتر روشک رضایی کلات(1)

نویسنده مسئول: دانشگاه بهداشت، دانشگاه علوم پزشکی کلستان، گرگان

yadban@yahoo.com

پست الکترونیکی:

تاریخ دریافت مقاله: 20/09/2019

چکیده

مقدمه: دیاژیتون یک حشره کشت سفید آن است که برای کنترل انواع مختلفی از حشرات در کشاورزی به کار می‌روند و با حساسیت بالا در آب محلول، غیر قطعی و در خاک، منحرک و مقاوم به تجزیه است. از این رو، یکی از تکنیک‌های این کوره به سفارش آب و آسمینه است. امروزه، برای حذف سموم از انواع روح‌های اکسیداسیون، شیمیایی استفاده می‌شود.

هدف: بررسی تجدید فتوکاتالیستی دیاژیتون با استفاده از نانوذرات دی اکسید تیناکیوم در محیط آب

مواد و روش‌ها: نوع مواد به صورت تجربی و در محیط‌های آزمایشی است. برای تیپ بروزهای UV از لامپ جعبه پرORTHUV در فاصله آناتومی و زمان نیاز نسبی تربیت بوده است. به منظور تجزیه دیاژیتون UV و فعالیت LC50 و pH مقدار نانوذرات، زمان فتوپیوندی و نیروی آزمایشی شده بوده.

نتایج: نتایج تجزیه دیاژیتون با استفاده از نانوذرات دی اکسید تیناکیوم 20-40 میکرومتری در pH 9.9، میکرومتری در pH 9.9-9.5 و میکرومتری در pH 9.5-9.0 دچار تجزیه شده و به دست آمده که مقدار آن در pH 9.9-9.5 و pH 9.5-9.0 میکرومتری دیاژیتون آزاد شده است.

کلیدواژه‌های نهایی: آب دیاژیتون، نانوذرات دی اکسید تیناکیوم، سنجش کیولوسیستیک

مقدمه

بر خلاف سموم کلر، خاصیت تجمع در بدن انسان را نداشته و در محیط سریع تر تجزیه می‌گردد(1). از این رو، یکی از نکاتی که روی این سم به سفارش آب و آسمینه است. امر سموم دیاژیتون، مانند دگر سموم فلزی آل، مرگ بی‌درنگ، کردن است. کلاین است. دیاژیتون دیاژیتون دارای اثر مکرر روی سیستم ایمنی(Immunotoxic) و سیستم آنتی‌ژن‌زا(General toxic) است.

برای حذف دیاژیتون روش‌های جدیدی از قبل تجزیه با امواج اولتراوکسیک(9) تجویز و برای این کار نانوذرات دی اکسید تیناکیوم به دست آمده است. انواع آب و آسمینه دیاژیتون با استفاده از دی اکسید تیناکیوم جزو مواد غیر سفید در نظر گرفته می‌شوند.

منبع:

1. دانشکده بهداشت، دانشگاه علوم پزشکی کلستان، گرگان، ایران
2. دانشکده بهداشت، دانشگاه علوم پزشکی کلستان، گرگان، ایران

32
بررسی حذف فتوکاتالیزی شیمیایی دیازونیون توسط نانوذرات...

فوتونکاتالیزیست در حضور پرتوهای UV بررسی گرایش و اثر عواملی از قبیل غلظت نانو ذرات دی اکسید تیتانیوم و غلظت نیترات توسط نانوذرات Pd و آزمایش گردید. تحقیق سو و COD نجات از آزمایشی بررسی شد. در مراحل اولیه روش، قابلیت استفاده از کاتالیزیت به صورت مکرر و حذف موثر آلاینده‌های شیمیایی است. همچنین، در این تحقیق سفید نانوذرات با استفاده از دافنگا مورد بررسی قرار گرفت.

جدول 1. مشخصات فیزیکی و شیمیایی سم حشرکش ارگانوفسفر دیازونیون 20.21

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>ویژگی‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده مولکولی</td>
<td>3 مولکلی (g mol(^{-1}))</td>
</tr>
<tr>
<td>وزن مولکلی سالمگالی</td>
<td>(g ml(^{-1})) (20 °C)</td>
</tr>
<tr>
<td>حلال در آب</td>
<td>صودایی خطر در WHO</td>
</tr>
<tr>
<td>د.. (\text{mgkg}^{-1})</td>
<td>د.. (\text{mgkg}^{-1}) (Daphnia)</td>
</tr>
<tr>
<td>فشار خاز</td>
<td>2000 mbar</td>
</tr>
</tbody>
</table>

مواد و روش‌ها

این پژوهش در مباسس پاپلوت در آزمایشگاه دانشکده بهداشت دانشگاه علوم پزشکی ایران انجام شد. مشخصات پاپلوت و مواد مصرفی هر آزمایش به صورت زیر است:

منشوقات پاپلوت: شامل راکتور فتوکاتالیزیست استوانه‌ای از جنس استیل خالص و مقاور در برابر خوردگی به قطر 105 میلی‌متر و ارتفاع 50 سانتی‌متر و به حجم تقییاً 2 لیتر ساخته شد که زاکت کوارتر ته بسته به قطر 50 میلی‌متر به صورت مجدالمرکز باری عبور پرتو UV درون این قرار گرفته بود. مجدالمرکز به طور مداوم به طور مداوم 2/5 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتور، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، توسط سیگ هوای کار گذارش‌شده در کف راکتر، وارد آن می‌گردید. همچنین به طور مداوم 2 لیتر در دقیقه، T

شکل 1. شیمانیک پاپلوت راکتور فتوکاتالیزیست
روشک رضا، کلانتری-پویسف دادبان‌شهرت-مهدی فردی‌کوچکی و دکتر علی اسرائیلی

سم صنعتی ۶۰ درصد خریداری شده از سیرفرش برای مصارف کشاورزی، استفاده‌گر و سپس نسبت به تعیین درصد خلوص واقعی آن، بر مبنای سم خالص اقدام شد.

جدول ۳ برنامه‌های تجزیه و تحلیل GC با دکتور FID برای سم دیازیون

<table>
<thead>
<tr>
<th>سنتس سم دیازیون</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 (°C)</td>
<td>Column limit</td>
</tr>
<tr>
<td>270 (°C)</td>
<td>Det Temp</td>
</tr>
<tr>
<td>240 (°C)</td>
<td>inj Temp</td>
</tr>
<tr>
<td>210 (°C)</td>
<td>Oven Temp</td>
</tr>
<tr>
<td>260 (°C)</td>
<td>Oven Final</td>
</tr>
<tr>
<td>18 (°C/min)</td>
<td>Oven Rise</td>
</tr>
<tr>
<td>1 (min)</td>
<td>Time Init</td>
</tr>
<tr>
<td>5 (min)</td>
<td>Time final</td>
</tr>
<tr>
<td>1 (min)</td>
<td>Stab Time</td>
</tr>
<tr>
<td>4 ml/min</td>
<td>Nitrogen Flow</td>
</tr>
<tr>
<td>30 ml/min</td>
<td>H2 Flow</td>
</tr>
<tr>
<td>30 ml/min</td>
<td>Air Flow</td>
</tr>
</tbody>
</table>

مشخصات تانر فوتوکاتالیستی: نانو‌دهر فوتوکاتالیست استفاده شده در این طرح، دی‌کسیدتیتانیوم (TiO2) بوده و ساخت شرکت Degusa (آلمن) است. مشخصات این نانو‌دهر در جدول ۲ آورده شده است.

 gord خلاصه

<table>
<thead>
<tr>
<th>متغیر م사항 سنتس (واحد)</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>رفاردر آب</td>
<td>آبودست</td>
</tr>
<tr>
<td>سطح ویژه (BET)</td>
<td>S_BET</td>
</tr>
<tr>
<td>چگالی</td>
<td>ρ</td>
</tr>
<tr>
<td>آرسنیک (As)</td>
<td>As</td>
</tr>
<tr>
<td>چربی (Hg)</td>
<td>Hg</td>
</tr>
<tr>
<td>آلومینیوم (Al)</td>
<td>Al</td>
</tr>
<tr>
<td>آنتی موآن (Sb)</td>
<td>Sb</td>
</tr>
<tr>
<td>سرب (Pb)</td>
<td>Pb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>گاز</th>
<th>معادل</th>
<th>رابطه</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>CO</td>
<td>CO</td>
</tr>
<tr>
<td>N2</td>
<td>N_2</td>
<td>N_2</td>
</tr>
<tr>
<td>O2</td>
<td>O_2</td>
<td>O_2</td>
</tr>
<tr>
<td>H2</td>
<td>H_2</td>
<td>H_2</td>
</tr>
</tbody>
</table>

مشخصات سم برای کالیبراسیون دستگاه GC. سم خالص دیازیون از شرکت سیگما آلدردچی بهره‌شده و برای تهیه نمونه‌های سم جهت انجام آزمایشات توصیفی بر روی آنها از

(Closed Reflux, Colorimetric Method)

کتاب استفاده‌مدور از توزیع طیف‌های برتو UV لامپ ۱۴۵ وات اسرام

شکل ۲: نمودار توزیع طیف‌های برتو UV لامپ ۱۴۵ وات اسرام
بررسی حذف فتوکاتالیستی دیازینون توسط نانوذرات...

آزمایش‌گاه مورد واحدهای پرتوهای UV قرار می‌گرفتند و در
زمان‌های مختلف (0 تا 90 دقیقه) نمونه‌گیری و در
استخراج و سنجش مقدار باقیمانده سم و
COD آن صورت می‌گرفت. در پایان، برای تعیین میزان نانوذرات باقیمانده در
پس تصفیه شده، از روش زیرآزمونی توسط دانشگاه مگنا استفاده شد. به این صورت که گل‌های مختلف نانوذره در
اکسیدهای آن در آب مایع تهیه گردید و در بزرگ
دهنه‌های بین ریخته شد. تعداد 10 نوار دافع تیز به هر کادم از
به‌سره اضافه گردید و در زمان‌های مختلف شده، لیت حیوانات
مرد انجام شد.

نتایج

درصد خلوت سمن دیازینون تجاری: برای تهیه نمونه‌های نمودار 1
چهار انجام عملیات تعیین‌بر روی آن‌ها، از سمن تجاری ۱۰
درصد خردی‌سازی به شکل از سمن فروشی برای کوارتزی
استفاده گردید. پسین نسبت به تعیین درصد خلوت واقعی
آن اقدام شد. نتایج آن در جدول ۱ نشان داده‌شد. با
این ترتیب، مقدار درصد خلوت سمن دیازینون تجاری,
برخلاف این که در شیمیایی سمن ۶۰ درصد ذکر گردیده
بود، میانگین ۳۶/۴ درصد با احراز معیار ۳۶/۴ درصد سنجش
گردید.

جدول ۱ درصد خلوت سمن دیازینون صنعتی موجود در بازار بر مبنای سمن خالص

<table>
<thead>
<tr>
<th>درصد خلوت</th>
<th>غلظت واقعی</th>
<th>Diaz/phen</th>
<th>سطح فنکس</th>
<th>عمیق</th>
<th>mg</th>
<th>غلظت سمن mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/9 %</td>
<td>۲۲</td>
<td>۱/۰۰۲</td>
<td>۵۸۷/۸۲۹</td>
<td>۶۴۱/۸۶۵</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>۳/۴ %</td>
<td>۲۴</td>
<td>۱/۰۱۹</td>
<td>۵۷۶/۵۳۵</td>
<td>۶۵۸/۳۱۵</td>
<td>۵۰</td>
<td></td>
</tr>
<tr>
<td>۲/۰ %</td>
<td>۱۰۳</td>
<td>۱/۰۱۴</td>
<td>۱/۵۳۹</td>
<td>۸۱۱/۸۵۱</td>
<td>۷۰</td>
<td></td>
</tr>
<tr>
<td>۱/۸ %</td>
<td>۱۸۵</td>
<td>۱/۰۱۴</td>
<td>۱/۵۳۹</td>
<td>۸۱۱/۸۵۱</td>
<td>۷۰</td>
<td></td>
</tr>
<tr>
<td>۱/۹ %</td>
<td>۱۸۵</td>
<td>۱/۰۱۴</td>
<td>۱/۵۳۹</td>
<td>۸۱۱/۸۵۱</td>
<td>۷۰</td>
<td></td>
</tr>
<tr>
<td>۳/۱ %</td>
<td>۵۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

احتمال تغییرات pH در کارایی فرانسه‌های فتوکاتالیستی: نتایج
این آزمون در شکل ۱ ارده شد. میزان pH به‌همراه مقدار
نای نانوذرات در هر دو زمان ۶۰ و ۹۰ دقیقه در
مناسب بود. به عنوان pH به‌همه انتخاب گردید و سایر آزمایش‌ها
در این انجام شد.

اثر غلظت‌های مختلف nTiO۲ و زمان بر راندمان حذف سمن
COD و UV: با توجه به مقدار به‌همن pH به‌همه
فیلر راندمان حذف سمن در مقایسه مختلف غلظت نانوذرات
که شامل ۴ غلظت ۰/۶۵/۰/۷۰/۰/۷۵/۰/۸۰ در لیتر است، در
زمان ماند ۰/۲۰/۰/۳۰/۰/۴۰/۰/۵۰/۰/۶۰/۰/۷۰/۰/۸۰/۰/۹۰/۱/۰۰/۰/۱۱۰/۰/۱۲۰ دقیقه و در حضور لامپ UV

۳۵

مجله دانشگاه علوم پزشکی گیلان/ دوره بیست و دوم/ وزنه‌منه بهداشت محتیط/۱۳۹۲

Downloaded from journal.gums.ac.ir at 10:21 IRST on Wednesday December 11th 2019
و هواده‌ی بروزی گردید که نتایج در شکل 4 تا 6 اورده شده است.

شکل 3. شکل راندمان حذف سم در pH های مختلف در غلظت 1 g/1 UV توسط نانوذرات TiO2 و در حضور پروتو

شکل 4. راندمان حذف سم در غلظت‌های مختلف نانوذرات TiO2 و در حضور بروز UV و هواده‌ی نانوذرات

شکل 5. راندمان حذف COD سم در غلظت‌های مختلف نانوذرات TiO2 و در شرایط مختلف متغیره‌ای تنظیم
جدول ۵ ضرایب سینتیک حذف دیازینون بر اساس روابط سینتیک درجه ۱ و ۲

<table>
<thead>
<tr>
<th>ضریب</th>
<th>K۱ (min⁻¹)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۱۷</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۲۳</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۲۸</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۳۳</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۳۸</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۴۳</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
<tr>
<td>۴۸</td>
<td>۰.۰۸۷۱</td>
<td>۰.۸۸</td>
</tr>
</tbody>
</table>

جدول ۶ آنالیز واریانس یکطلقه متغیرهای اصلی و اثرات منفی‌الاندیشی آنها بر حذف سم

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>F-Value</th>
<th>درجه آزادی</th>
<th>مجموع گردش‌ها</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیتریکس</td>
<td>۱۰۵۷۴۸</td>
<td>۱۰</td>
<td>۱۰۵۷۴۸</td>
<td>< 0.001</td>
</tr>
<tr>
<td>زمان</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۰.۷۹۸۱</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۹۹۸۹۴۷</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۱۷۷۱۷۳</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

جدول ۷ آنالیز واریانس یکطلقه متغیرهای اصلی و اثرات منفی‌الاندیشی آنها بر حذف COD

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>F-Value</th>
<th>درجه آزادی</th>
<th>مجموع گردش‌ها</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیتریکس</td>
<td>۱۰۵۷۴۸</td>
<td>۱۰</td>
<td>۱۰۵۷۴۸</td>
<td>< 0.001</td>
</tr>
<tr>
<td>زمان</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۰.۷۹۸۱</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۹۹۸۹۴۷</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
<tr>
<td>۱۷۷۱۷۳</td>
<td>۱۷۷۱۷۳</td>
<td>۱</td>
<td>۱۷۷۱۷۳</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

متن‌های ذکر دارای است.
آزمایش‌های تعیین سرمایه: در تعیین حد سرمایه نانوذرات بر
اساس مدل برویت که در جدول 8 آمده است، مقدار
با انواع زمان موانع کاهش می‌یابد با طوری که مقدار آن
در 12 ساعت معادل 0.057 (mg/l) و در 44 ساعت (mg/l) 0.07
نیز برای 12 NOEC ساعت معادل (mg/l) 4245 و در 96 ساعت
سنگین گردید.

جدول 8: شاخص‌های مختلف LC50 و در زمان‌های مختلف
nTiO2
الدمانی 85 90 95 98 99 100

<table>
<thead>
<tr>
<th>حد بالا</th>
<th>حد پایین</th>
<th>NOEC (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.8</td>
<td>47.4</td>
<td>220</td>
</tr>
<tr>
<td>40.9</td>
<td>34.4</td>
<td>230</td>
</tr>
<tr>
<td>31.9</td>
<td>28.4</td>
<td>240</td>
</tr>
<tr>
<td>25.6</td>
<td>22.2</td>
<td>250</td>
</tr>
<tr>
<td>19.5</td>
<td>16.3</td>
<td>260</td>
</tr>
<tr>
<td>16.8</td>
<td>12.3</td>
<td>270</td>
</tr>
<tr>
<td>13.2</td>
<td>9.3</td>
<td>280</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری
در سال 2009، Wang و همکاران تجربه فتوکاتالیستیک
اندوز را با UV-TiO2 بررسی کردند و شرایط pH به هنگر 6.7 و pHR به دست آورده بود. pH
متغیر آن است که به شیب‌رسانی های زمان در محصول
خانین است. نظر به این که آب‌های شرب هم در همین
مقدار pH نیز نیز با توجه به نتایج نمود. به همین
مقدار pH متغیر آزمایش‌های زیست در همین
انجام
8 انجام گردید و برای آزمایش‌های نیز در همین
شکل. در سال 2007، Daneshvar و همکاران تجربی
فتوکاتالیستیک دیازونین با UV-C/ZnO
فتوکاتالیستیک دیازونین با UV بررسی قرار
داده. آزمایش‌ها نشان داد که می‌توان در مدت 80 دقیقه، درصد مورد تخریب نمود (7) که این، در مقایسه به تحقیق ما
عده کمتری را نشان دهد.

COD تحقیقات در سال 2009 نشان داد که
دیازونین آماده مصرف، 14/9 برای دیازونین خالص است که
این به‌وسیله مواد فعال است که به همراه دیازونین خالص، به
آن اضافه می‌شود. در تجربه فتوتکانی در دیازونین، برخلاف

مجله دانشگاه علوم پزشکی گیلان/ دوره بیست و دوم/ وزمانه بهدادست می‌خوان/ 1392/ 38
بررسی حذف فتوکاتالیستی دیاژینون توسط نانوذرات... امتیاز معنی‌سازی کامل سم و حذف آن از سیستم است.

متغیرهای اصلی و فرعی محاسبه شده توسط نرم‌افزار Designe Expert-7 نشان دادند که در مواردی اثر مشابه بر حذف سم هستند (P-value<0.001) و در مواردی در اثر نتیجه این گروه غیر معنی‌بردار بود. در بخش سوم، سمت این نتیجه از آزمون آزمون فرضیه در نتیجه استفاده نمود.

نوع‌سنجاک اعلام می‌دارند که هیچ‌گونه تضاد منافعی ندارند.

منابع
Investigation of Photocatalytic Degradation of Diazinon in Synthetic Wastewater Using Nano -TiO₂/UV

Rezaei kalanteri R.(PhD)¹ - Dadban shahamat Y.- (PhD)² Farzadkia M.(PhD)³ - Esrafily A.(PhD)⁴

*Corresponding Address: Faculty of Health, Golestan University of Medical Sciences, Golestan, Iran
E mail: ydadban@yahoo.com

Received: 20 Jul/2013 Accepted : 04 Oct/2013

Abstract

Introduction: Diazinon is an organophosphorus pesticide used to control a variety of insects in agriculture and it is relatively water soluble, non-polar, moderately mobile and persistent in soil, hence, it is a matter of health concern when using groundwater and surface derived drinking water.

Objective: In this study, Photocatalytic degradation of Diazinon was investigated using the nano-TiO2, as a photocatalyst and in aqueous solution.

Materials and Methods: The UV source was provided by OSRAM 125W high-pressure mercury lamp and the initial concentration of Diazinon was 40 mg/l. In this study, the treatment conditions included the presence of UV and aeration, pH, amount of nano-TiO2 and the contact time. For the purpose of pre-concentration and extraction of the Diazinon from the samples, extraction was done using dispersive liquid-liquid microextraction (DLLME) technique and, then, analysis was done by gas chromatography (GC-FID). The extent of Diazinon degradation was also determined by COD measurements by titration of the treated solution with KCr2O7 solution. The toxicity of nano-TiO2 was investigated by daphnia magna bioassay analyses.

Results: The kinetics of Diazinon photodegradation was found to follow the first-order rate law and the rate constant was 0.099 (min⁻¹). The optimum conditions for the degradation of Diazinon were found to be pH 8, [nano-TiO2] = 0.2 g/l and [time] = 120 min, and the removal efficiency of Diazinon and COD were 99.64% and 65%, respectively. The LC50 (96h) and NOEC (96h) of nano-TiO2 were 1173 and 507 mg/l, respectively.

Conclusion: The results show that the presence of UV and aeration, has a positive effect on Photocatalytic degradation of Diazinon and COD removal and the maximum removal of them were due to UV irradiation, exposure time, aeration and nano-TiO2, respectively. According to the US EPA classification, nano-TiO2 is classified as practically non-toxic.

Conflict of interest: non declared

Key words: Biological Assay/ Diazinon/ Titanium Dioxide/ Water Purification

Journal of Guilan University of Medical Sciences, Suplement 1, 2014, Pages: 32- 41

1. Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
2. Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran