بررسی حذف فتوکاتالیستی دیازیتون توسط نانوذرات ذی‌اسید تیناتیوم از پس‌باین

ستیتک

دکتر روشنک رضایی کلاتری (PhD) 1 دکتر مهدی فراداکی (PhD) 1 دکتر علی ایرانی (PhD) 2

نوعی دسته‌بندی: دانشگاه بیدشات، دانشگاه علوم پزشکی گلستان، گرگان

yadaban@yahoo.com

تاریخ دریافت مقاله: 02/10/09
تاریخ پذیرش: 03/01/09

چکیده

مقیده: دیازیتون یک جنگله‌کش سفمر آبی است که در کنترل انواع مختلفی از حشرات در کشاورزی به کار می‌رود و با حفاظت از محیط زیست، از این رو، یکی از نظریه‌ها و روش‌های مصرف مناسب آن سر به سطح انرژی دومین است. اثر تسریع دیازیتون، مانند دیگر سم‌های فسفات، آلیکس‌پان اسمی، می‌تواند بر عملکرد کلینگ‌های استراتژی باشد.

هدف: بررسی تجزیه فتوکاتالیزیک دیازیتون با استفاده از نانوذرات ذی‌اسید تیناتیوم توسط آب.

مواد و روش‌ها: نوع مطالعه به صورت تنبیه و در مقدم پایلوت است. برای توزیع و سیلوس دیازیتون UV از آزمایشگاه گرگان در یک محیط آب چهار دسته 125 وات استفاده شد. غلظت اولیه دیازیتون در 0.01 میلی‌گرم در لیتر بود. میزان کنترل تیوئتیک بر از این تحقیق در دسترس بود. به مقدار تخلخل و استرخ برای نانوذرات از نپیزها، از مواد سیلیکاسیون (این با محور) نانوذرات فلورید تولید شد. سپس، NPs از دیازیتون ترکیب شدند. UV ترکیب دیازیتون حفاظت شد. سپس، دیازیتون و NPs در pH 7 (200:1) میلی‌گرم در لیتر استفاده شد. نتایج: تحقیق نشان داد به آب دیازیتون از مقدار اولین تنبیه می‌کرد که کمتر از فاصله pH 7 (200:1) نانوذرات ذی‌اسید تیناتیوم hijos بودند.

توضیح: نام شرکت توصیف یاری دیازیتون از آب در رابطه با دیازیتون UV، از نانوذرات NPs با استفاده از ترکیب UV و نانوذرات NPs است. سفمر آبی دیازیتون مصرف می‌شود.

کلید واژه‌ها: سم‌های فتوکاتالیزیک، دیازیتون، سیلیکاسیون، NPs، نانوذرات ذی‌اسید تیناتیوم
مواد و روش‌ها

این پژوهش در مقياس پاپلوت در آزمایشگاه دانشکده بهداشت دانشگاه علوم پزشکی ایران انجام شد. مشخصات پاپلوت و مواد مصرفی هر آزمایش به صورت زیر است:

مشخصات پاپلوت: شامل راکتور فتوکاتالیستی استوانه‌ای از جنس استیل خالص و مقاوم در برابر خوردگی به قطر 100 میلی‌متر و ارتفاع 50 سانتی‌متر و به حجم تقریباً 2 لیتر ساخته شد که زاکت کوارتز به بنده به قطر 50 میلی‌متر به صورت محدب مورد مرکزی برای عبور برتو UV درون آن قرار داده شد. درون سینگ جریان هوای غیر محاسبه شده در کف راکتور وارد و نمونه غربش همچنین یک پمپ کوچک آب برای جریان غربش در شکل شماره 1 أورده شد. راکتور برتو UV نیز از لامپ الیکترونیک قبل متوسط بخار جیوه 135 وات که ساخت کارخانه اسرام (Osram) کشیده شد. مشخصات طول موج آن در داشته‌است صحن شریف سنگش گردید که در شکل 2 نشان داده شد. استفاده از نانوذگان دایازونین توسط نانوذگان...
روشک رضایی کلاتری- یوسف دادبانی-شهامت- مهدی فرزادکیا و دکتر علی اسرافیلی

قسمت ۲۰ درصد خریداری شده از سفروشی براي مصرف کشاورزی، استفاده گردید و سپس نسبت به تعیین درصد خلوص واقعی آن، بر مبنای سم خالص اقدام شد.

جدول ۳ برشمدمم و تنظیمات دستگاه با دکتور برای FID سنجش سم دیازیون

<table>
<thead>
<tr>
<th>سنتج سم (C)</th>
<th>Column limit</th>
<th>۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۰ (℃)</td>
<td>Det Temp</td>
<td>۲</td>
</tr>
<tr>
<td>۶۰ (℃)</td>
<td>inj Temp</td>
<td>۳</td>
</tr>
<tr>
<td>۵۰ (℃)</td>
<td>Oven Temp</td>
<td>۴</td>
</tr>
<tr>
<td>۴۰ (℃)</td>
<td>Oven Final</td>
<td>۵</td>
</tr>
<tr>
<td>۱۸ (°C/min)</td>
<td>Oven Rise</td>
<td>۶</td>
</tr>
<tr>
<td>۱ (min)</td>
<td>Time Init</td>
<td>۷</td>
</tr>
<tr>
<td>۵ (min)</td>
<td>Time Final</td>
<td>۸</td>
</tr>
<tr>
<td>۱ (min)</td>
<td>Stab Time</td>
<td>۹</td>
</tr>
<tr>
<td>۴ ml/min</td>
<td>Nitrogen Flow</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳ ml/min</td>
<td>H2 Flow</td>
<td>۱۱</td>
</tr>
<tr>
<td>۳ ml/min</td>
<td>Air Flow</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

مشخصات تانور فوتوکاتالیست: تانوشه فوتوکاتالیست استفاده شده در این طرح، دی-اکسید تیتانیوم (TiO2) هیدروفیلیک است که دارای قطر متوسط ۱۵ نانومتر بوده و ساخت شرکت دگوسای (Degusa). آلمان است. مشخصات این تانوشه در جدول ۲ آورده شده است.

<table>
<thead>
<tr>
<th>جدول ۲ مشخصات تانوشه TiO2</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>رفرانس در آب (میلگرم)</td>
<td>آبودتی</td>
</tr>
<tr>
<td>سطح ویژه (mg/g)</td>
<td>(BET)</td>
</tr>
<tr>
<td>چگالی (g/L)</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>pH</td>
<td>۳٫۵-۵</td>
</tr>
<tr>
<td>آرسنیک (As) (ppm)</td>
<td>۰</td>
</tr>
<tr>
<td>جویو (Hg) (ppm)</td>
<td>۰</td>
</tr>
<tr>
<td>آنتی موان (Sb) (ppm)</td>
<td>۰</td>
</tr>
<tr>
<td>سرب (Pb) (ppm)</td>
<td>۰</td>
</tr>
</tbody>
</table>

مشخصات سم: برای کالیبراسیون دستگاه GC سم خالص دیازیون از زیرین آبی کلرفل‌های قابلیت‌های نسبی شده و برای نهایی تام‌سازی سم به متغیر عمليات تصفیه بر روی آنها از (Closed Reflux، Colorimetric Method) کتاب استفاده شده است (۱۲).

کتاب استفاده شده در تشخیص سم از دانشگاه علوم پزشکی گیلان/صورت جلد و دوم/وزن‌ماس بهداشت مطب�. ۱۳۹۲
آزمایشگاه مورد مواجهه پرتوهای UV قرار گرفتند و در زمان‌های مختلف (0 تا 90 دقیقه) نمونه‌گیری و فیلتراسیون، استخراج و تست مقدار باقیمانده سرم و COD انجام گردید. در پایان، برای تعیین سیب‌تندیز باقیمانده در پساب تصفیه، شده از روش دیسمون توسط دانگ مگنا استفاده شد. به این صورت که غلظت مختلف نانوهای دی اکسیدنیتروم در آب متغیر تهیه گردید و در بشرهای دهانگشاد ریخته شد. تعداد 10 نوزاد دافته تیز به هر کدام از بشرها اضافه گردید و در زمان‌های مختلف شده، نتیجه‌های مربوط انجام گردید.

نتایج
درصد خوش سرم دیازونین تجاری: برای نتهی نمونه‌های سرم جهت انجام عملیات تصفیه بر روی آنها، از سرم تجاری 0 درصد خرد‌دارینه شده از سرم فروشی برای مصارف کارزاری استفاده گردید و سپس نسبت به تعیین درصد خلوص واقع آن اقدام شد. نتایج آن در جدول 1 نشان داده شد. به این ترتیب، مقدار درصد خلوص سرم دیازونین تجاری، بیشتر از همانی که در مشخصات سرم 20 درصد ذکر گردیده بود، معادل 20 درصد با انحراف معیار 3 درصد سنجه گردید.

جدول 1: درصد خلوص سرم دیازونین صنعتی موجود در بازار با میانگین سال خلاصه

<table>
<thead>
<tr>
<th>درصد خلوص</th>
<th>غلظت واقعی</th>
<th>Slt سرم</th>
<th>مقدار قانونی</th>
<th>mg سرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2/11%</td>
<td>20</td>
<td>90</td>
<td>904</td>
<td>150</td>
</tr>
<tr>
<td>0.2/21%</td>
<td>42</td>
<td>110</td>
<td>885</td>
<td>250</td>
</tr>
<tr>
<td>0.2/9%</td>
<td>10</td>
<td>99</td>
<td>986</td>
<td>500</td>
</tr>
<tr>
<td>0.2/14%</td>
<td>13</td>
<td>91</td>
<td>913</td>
<td>1000</td>
</tr>
<tr>
<td>0.2/13%</td>
<td>14</td>
<td>92</td>
<td>924</td>
<td></td>
</tr>
</tbody>
</table>

میانگین انحراف معیار

اثر غلظت‌های مختلف nTiO2 و زمان بر راندمان حذف سرم دیازونین تعیین شد. به‌طور کلی، زمان در مقدار معادل غلظت نانو‌های دی اکسیدنیتروم در 2/0، 2/1، 2/2، و 2/3 میلی‌گرم در لیتر (mg/L) می‌تواند سرم دیازونین تجاری را به‌طور کامل حذف کند. نتایج تغییرات pH در کارایی فرآیند نانو کاتالیستی نشان‌دهنده این آزمون در شکل 1 آورده شده است که تأثیر به‌پایین pH نانو-بانه حذف سرم در هر 30 دقیقه در هر 30 دقیقه در مناسب به‌عنوان pH بهبود انتخاب گردید و سایر آزمایش‌ها pH در این انجام شد.
روش‌شناسی کلانترونی- پویس داده‌ها به‌همراه مدل‌های نهایی و جدید در علم شیمی و دیگر علوم فنی و یادگیری ماشین

و هواهی بررسی گردید که نتایج در شکل 4 تا 6 ارده شده‌است.

شکل 3: شکل راندمان حذف سم در غلظت 4/1000 جامه‌ای حذف سرم با استفاده UV و هواهی نانوذرات TiO2 در حضور پرتو UV

شکل 4: راندمان حذف سم در غلظت‌های مختلف نانوذرات TiO2 و UV و در حضور پرتو UV و هواهی

شکل 5: راندمان حذف سم در غلظت‌های مختلف نانوذرات TiO2 و در حضور پرتو UV و هواهی

شکل 6: مقایسه راندمان حذف سم به واسطه UV و غلظت بهینه نانوذرات (0/02 جامه/لیتر) به موارد هواهی و شرایط مختلف سیستم حذف دیازیتون

سیتیک حذف سم در شرایط بهینه نانوذره (0/02 جامه/لیتر) و غلظت‌های مختلف دیازیتون از آب: در این مطالعه، شرایط بهینه نانوذرات به‌دست آمده از فاز اول، غلظت‌های مختلف دیازیتون به راکتور وارد شد و سیتیک واکنش حذف سم در زمان‌های مختلف (0/120، 0/240، 0/360 دقیقه) محاسبه گردید که نتایج در جدول 5 ارده شده‌است.

COD تایی متغیرهای مختلف حذف سم و برای تعیین سطح مصرف داری متغیرهای اصلی شامل غلظت نانوذرات، پرتوهای UV و هواهی و انرژی ترکیب آنها بر راندمان DesignExpert 7 حذف سم و COD به وسیله نرم‌افزار یک جدول آنالیز واریانس یک طرفه کلی ترسیم گردید که در جدول 6 نشان داده شده‌است.
جدول ۵: ضریب سیئنتیک حذف دیازونیون بر اساس روابط سیئنتیک درجه ۱ و ۲

<table>
<thead>
<tr>
<th>حذف دیازونیون (mg)</th>
<th>ضریب</th>
<th>K₁(min⁻¹)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۵۰</td>
<td>۱۲</td>
<td>۶۲۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۰۹۶</td>
<td>۱۳</td>
<td>۶۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۰۹۶</td>
<td>۱۴</td>
<td>۵۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۱۹۲</td>
<td>۱۶</td>
<td>۴۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۱۹۲</td>
<td>۱۷</td>
<td>۳۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۲۵۸</td>
<td>۱۸</td>
<td>۲۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۲۵۸</td>
<td>۱۹</td>
<td>۱۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۲۵۸</td>
<td>۲۰</td>
<td>۲۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۲۵۸</td>
<td>۲۱</td>
<td>۳۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۲</td>
<td>۴۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۳</td>
<td>۵۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۴</td>
<td>۶۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۵</td>
<td>۷۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۶</td>
<td>۸۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۷</td>
<td>۹۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
<tr>
<td>۳۴۰</td>
<td>۲۸</td>
<td>۱۰۰۰۰۰</td>
<td>۰.۹۸</td>
</tr>
</tbody>
</table>

جدول ۶: آنتیلار واریانس یک‌طرفه متغیرهای اصلی و اثرات مقابل آنها بر حذف سم

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>مجموع پرده‌ها</th>
<th>درجه آزادی</th>
<th>F-Value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل</td>
<td>۴۶</td>
<td>۳۶</td>
<td>۸۶.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>زمان</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>هواده‌ی</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>UV</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>nTiO₂</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
</tbody>
</table>

جدول ۷: آنتیلار واریانس یک‌طرفه متغیرهای اصلی و اثرات مقابل آنها بر حذف COD

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>مجموع پرده‌ها</th>
<th>درجه آزادی</th>
<th>F-Value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل</td>
<td>۴۶</td>
<td>۳۶</td>
<td>۸۶.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>زمان</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>هواده‌ی</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>UV</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
<tr>
<td>nTiO₂</td>
<td>۱۷۱/۳۴</td>
<td>۳۶</td>
<td>۶۸.۴۰</td>
<td>۰.۰۰۰۱</td>
</tr>
</tbody>
</table>

زمره دانشگاه علوم پزشکی کیلان/ دوره بیست و دوم/ ویژه‌نامه بهداشت محتوای/ ۱۳۹۲
آزمایش‌های تعیین سمیت: در تعیین حد سمیت نانوذرات بر
اساس مدل پروپیت که در جدول 8 آمده است، مقادیر
با انفراش زمان مواجه کاهش می‌یابند، به طوری که مقدار آن
در 12 ساعت معادل ۴۴۷ (mg/l) و در ۹۶ ساعت (mg/l)
نیز تا ۱۱۳۳ می‌رسد. نتایج جدول ۹ نشان می‌دهد NOEC
حدود معادل (mg/l) ۲۴۵ و در ۹۶ ساعت (mg/l) سنجش گردید.

<table>
<thead>
<tr>
<th>میزان (mg/l)</th>
<th>حد بالا</th>
<th>حد پایین</th>
<th>حساب</th>
<th>حساب اندی</th>
<th>حد بالا</th>
<th>حد پایین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۹۶</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۹۶</td>
<td>۱۱۳۳</td>
</tr>
<tr>
<td>۳</td>
<td>۷۷</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۷۷</td>
<td>۱۱۳۳</td>
</tr>
<tr>
<td>۵</td>
<td>۶۸</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۶۸</td>
<td>۱۱۳۳</td>
</tr>
<tr>
<td>۷</td>
<td>۵۸</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۵۸</td>
<td>۱۱۳۳</td>
</tr>
<tr>
<td>۹</td>
<td>۴۸</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۱۱۳۳</td>
<td>۴۸</td>
<td>۱۱۳۳</td>
</tr>
</tbody>
</table>

بحث و تپیچ که گری
در سال ۲۰۰۹، قدرت کاهش میزان حذف کامل سم در مدت زمان ۱۴ دقیقه، مقدار COD درصد کاهش یافته‌است (۱۴) که این کاهش راندمان حذف در برای راندمان حذف سم در این تحقیق نیز مشاهده شد. بود، تحقیق‌گرها و همکارانش در سال ۲۰۱۱ zhang بودند از تحقیق دیگری که با افتخاری که به محل محل اولتراواسیونی که قدرت ۹۰۰ وات در مدت ۴۰ دقیقه تفاوت معنی‌داری مشاهده نشد. (۱۸)، به عبارت دیگر، در فراورد حذف نانوذرات TiO۲ مورتر هستند. البته توان لامپ به‌کار رفته در تحقیق آنها ۳۰ وات بود که ایک از دلایل کاهش راندمان است. با توجه به شکل ۴ و ۵ که نشان می‌دهد برقیات UV به نهایی قادئ به حد حذف بالایی از آن هستند، یک دیدگاه جالب برای آن می‌باشد که به شکست مکانیسم دیاژنیک است یا قدرت آن CO به همان مقدار کاهش نانوذرات و سم را به مکانیزم واسطه‌های دیگر –که چیزی مربوط به تشکیل نموده‌است. با کاربرد نانوذرات مقدار کاهش بیشتری می‌یابد که

<table>
<thead>
<tr>
<th>حسادت اندی</th>
<th>حساب</th>
<th>حساب</th>
<th>حساب</th>
<th>حساب</th>
<th>حساب</th>
<th>حساب</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۱۰۱</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۱۰۲</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۱۰۳</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۱۰۴</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۱۰۵</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۲۶</td>
<td>۱۵۰</td>
</tr>
</tbody>
</table>

مجله دانشگاه علوم پزشکی گیلان/دوره بیست و دوم/پژوهانه بهداده مطبوع/1392/38
بررسی حذف فتوکانالیستی دیازینون توسط نانوذرات...

نشانه معدنی سازی کامل سم و حذف آن از سیستم است. متعارف‌های اصلی و فرعی محاسبه شده توسط نرم‌افزار Designe Expert-7 بودند. در نهایت، هواهوی و نانوذرات TiO2 توسط اثر مثبت بر حذف سم هستند (P-value < 0.001) و شدت این اثرات به ترتیب، معادل 0.76/0.4 و 0/4 درصد است. همچنین نتایج متعارف‌های فرعی شامل زمان تماس- هواهوی، زمان تماس- پروتو، هواهوی- پروتو و UV نیز معنی دار می‌باشد (P-value < 0.001).

مطالعه جدول ۶ و ۷ متعارف‌های زمان تماس- هواهوی، پروتو و UV نانوذرات TiO2 دارای اثر مثبت بر حذف سم و (P-value < 0.001) و شدت این اثرات به ترتیب مذکور است. با توجه به نتایج آزمون زیستی نانوذرات طبق دستورالعمل سازمان حفاظت محیط زیست...

منابع

13. YUK Sing G, Choyngu L. Food and Chemical Toxicology 2007; 45(10): 2057 2063

Investigation of Photocatalytic Degradation of Diazinon in Synthetic Wastewater Using Nano -TiO\textsubscript{2}/UV

Rezaei kalanteri R.(PhD)1 - Dadban shahamat Y.- (PhD)2 Farzadkia M.(PhD)1 - Esrafily A.(PhD)1

*Corresponding Address: Faculty of Health, Golestan University of Medical Sciences, Golestan, Iran

E mail: ydadban@yahoo.com

Received: 20 Jul/2013 Accepted : 04 Oct/2013

Abstract

Introduction: Diazinon is an organophosphorus pesticide used to control a variety of insects in agriculture and it is relatively water soluble, non-polar, moderately mobile and persistent in soil, hence, it is a matter of health concern when using groundwater and surface derived drinking water.

Objective: In this study, Photocatalytic degradation of Diazinon was investigated using the nano-TiO\textsubscript{2}, as a photocatalyst and in aqueous solution.

Materials and Methods: The UV source was provided by OSRAM 125W high-pressure mercury lamp and the initial concentration of Diazinon was 40 mg/l. In this study, the treatment conditions included the presence of UV and aeration, pH, amount of nano-TiO\textsubscript{2} and the contact time. For the purpose of pre-concentration and extraction of the Diazinon from the samples, extraction was done using dispersive liquid-liquid microextraction (DLLME) technique and, then, analysis was done by gas chromatography (GC-FID). The extent of Diazinon degradation was also determined by COD measurements by titration of the treated solution with KCr2O7 solution. The toxicity of nano-TiO\textsubscript{2} was investigated by daphnia magna bioassay analyses.

Results: The kinetics of Diazinon photodegradation was found to follow the first-order rate law and the rate constant was 0.099 (min-1). The optimum conditions for the degradation of Diazinon were found to be pH 8, [nano-TiO\textsubscript{2}] = 0.2 gl-1 and [time] = 120 min, and the removal efficiency of Diazinon and COD were 99.64\% and 65\%, respectively. The LC50 (96h) and NOEC (96h) of nano-TiO\textsubscript{2} were 1173 and 507 mg/l, respectively.

Conclusion: The results show that the presence of UV and aeration, has a positive effect on Photocatalytic degradation of Diazinon and COD removal and the maximum removal of them were due to UV irradiation, exposure time, aeration and nano-TiO\textsubscript{2}, respectively. According to the US EPA classification, nano-TiO\textsubscript{2} is classified as practically non-toxic.

Conflict of interest: non declared

Key words: Biological Assay/ Diazinon/ Titanium Dioxide/ Water Purification

Journal of Guilan University of Medical Sciences, Suplement 1, 2014, Pages: 32- 41

1. Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
2. Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran