اثر ضدسرطانی کمپلکس‌های جدید پالادیوم بر روي دره سلولی سرطان معده

دکتر حمید ناجی‌زاده (PhD) - دکتر ماجدی کامیار (PhD) - دکتر نوروز نجفی‌زاده (MSc استاد) - دکتر حسن منشوری (PhD) ترشی

نوبت‌های مطالعه: گروه علوم تشخیصی و پایان‌نامه‌رای دانشگاه علوم پزشکی اردبیل، اردبیل، ایران

n.najafzade@arums.ac.ir

تاریخ دریافت مقاله: 1387/11/28 - پذیرش: 1388/02/28

چکیده

مقدمه: درمانی بیشتری برای سرطان معده در مورد داروهای تردیدی دارویی آگاهی جانی و درمانی به همراه دارد. بازیابی، ارزشی ساختار و استفاده از داروهای جدید که نسبت به سلول‌های درمانی کمتر سبب توده و نسبت به سلول‌های بدخیم توان واریز کردن بالا داشته باشد، به داشتن این سلول‌های آسیب‌پذیر کرده‌اند. مدل روشی برای تولید کمپلکس‌های جدید پالادیوم بر سطح سلولی سرطان معده.

مواد و روش‌ها: کمپلکس‌های جدید پالادیوم به تدریجی و به نسبت (1:10) فانتوئیل/پالادیوم (II) (کمپلکس‌های ترکیبی (C) در ازاین‌جا کمپلکس‌های ترکیبی ساخته شد و بررسی از درمان، سلولی و دارویی مدل روشی توسط مدل (AGS) از دیدگاه سلولی سرطان معده. نتایج: کمپلکس‌های جدید نسبت به هم‌مدل تأثیر دارنده، بهایی به غلظت دارند؛ پهلوی که کمپلکس‌های طبیعی از 11 میکروگرم در میلی‌لیتر کمپلکس 2 در پی از 90 میکروگرم در میلی‌لیتر کمپلکس 2 که در دسترس قرار گرفته‌اند. نتیجه‌گیری: غلظت این کمپلکس‌ها از پالادیوم به طرف دیگر کمپلکس‌های ساخته بدن می‌تواند به سلول‌های سلول‌های را کاهش دهد و به غلظت درادی جایگذین در مدل سرطان معده بکار برد.

کلید و ازدیده‌ها: پالادیوم/پالادیوم؛ سلولی سرطان معده؛ سلول‌های ساخته نوترونیک

مجله دانشگاه علوم پزشکی گیلان، دوره بیست و سوم شماره 80 صفحات: 73-92

مقدمه

سلول‌های سالم نیز آسیب می‌پذیرند (1و2). کمپلکس‌هایی که بر پایه پالادیوم ساخته شده‌اند در داروهای مهم درمان سرطان‌ها به‌شمار می‌روند. روش‌پردازی ضدسرطانی سیس‌پلاتین در موس در دهه 1960 کشف شد. به دنبال مطالعات و آزمایش‌های پلی‌گری، سیس‌پلاتین (به‌یه cис-diamminedichloroplatinum) اختصار نوبه‌تان سودآلی و نه تنها تاثیرهای جراحی که در درمان سرطان‌ها به روش‌های مختلفی به کار رفته‌اند. از این روش‌ها از این روش‌های به سلول‌های ایالتی و با کمک این کمپلکس‌های ساخته نوترونیک به‌طور مناسب در مدل‌های سرطانی برای روز کمپلکس‌های ساخته نوترونیک به جمع سرطان‌های بیشتر، تخمدان، مانه، سر و گردن، آندومتر

1. گروه بیوشیمی، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران
2. گروه علوم تشخیصی و پایان‌نامه‌رای، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران
3. گروه بیوشیمی، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران
4. گروه شیمی، دانشگاه علوم دانشگاه سیستان و بلوچستان، زاهدان، ایران
به‌خصوص لیگان‌های شلالات کننده دی‌اتیل‌دی‌تیوکربیمات (DDTC) (20) برتری استفاده از کمیلکس‌های جدید، وجود ریشه‌های کریمات و گروه‌های تبول است که عوارض جانبی کمی داشته و به‌جز داده‌های کمی دربارهٔ تأثیر کمیلکس‌های ضدسرطان پالادیوم جدید موجود است. در این مطالعه، برای اولین بار تأثیر ضدسرطانی این کمیلکس‌ها بر سرطان سرین مراجعه می‌شود.

مواد و روش‌ها

داروهای کمیلکس‌های پالادیوم مورد مطالعه که فرمول شیمیایی آنها در زیر آمده است.

کمیلکس 1 : 3 - پروپیلن بیس (دو تیوکربیمات) بیس (10) فنانتئولین پالادیوم (II) نیترات

کمیلکس 2 : 4 - هلیتان بیس (دو تیوکربیمات) بیس (10) فنانتئولین پالادیوم (II) نیترات

کمیلکس 3 : 8 - اکتیل بیس (دو تیوکربیمات) بیس (10) فنانتئولین پالادیوم (II) نیترات

کمیلکس 4 : 1,4- بنتیلن بیس (دو تیوکربیمات) بیس (10) فنانتئولین پالادیوم (II) نیترات

کمیلکس 5 : 1,8- اکتیلن بیس (دو تیوکربیمات) بیس (10) فنانتئولین پالادیوم (II) نیترات

گروه‌ها:

گروه‌های بیمار و کنترل در برنامه مطالعه بود. زیرا دو بیمار دارویی مورد مطالعه بودند. DCCP (20) برقراری کمک از نوع اینترکالیشین است، بارکا مصرف می‌کند کمیلکس‌ها 110- فنانتئولین پالادیوم (II) نیترات با جای 18 Treatment به عنوان آنتی‌کانسر بود. رابطه کاملاً خطرناک می‌باشد. 01 میکروگرم در میلی‌لیتر

کشت سلولی:

شدآ در محیط 1640 حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% قرار گرفت. برای این کمیلکس‌ها به دست سلول‌های گراف می‌رسد.

در مطالعه انجام شده است. 7 کشف اثر کمیلکس‌های جدید پالادیوم فراز گرفت. رده سلولی از شرکت ایننتیستی پاستور، ایران خریداری شد.

در حاوی 10% سرم جنین گاوی و محلول آتیومیت پن سیلوئید، استریتوپیس 1/5 کشت داده شد و سپس در اکتیواتور، در دمای 37°C و CO2؛ 5% C
تگدراز شد.

ارزیابی مورفولوژی سلولی

رده سلولی سرطان معد (AGS) در پیشباز فلایسک T25 کشت داده شدند و پس از یک هفته آنها را با تریپین جدای کردیم و با سانتریفژ، ۲۰ هزار سلول در هر پیلت شیم خانه به مدت هفت روز کشت داده شد. روز اول میکس شات سلول‌های مختلف از هر نوع کمپلکس بالادیمویی تعیین شد. پس از هفت روز، سلول‌ها به آموزگار آکریدین اورینج (۱۰۰ میکروگرم بر میلی لیتر) و اتانول بروماید (۱ میکروگرم بر میلیلیتر) (۱۰) رنگ آمیزی نمودند و در دیافراکما استخوان، تصویربرداری شد. هنگامی که سلول‌های آپوپتودیک مترامک و قطعه‌قطعه شده و براشی از سلول‌های طبیعی متفاوت، عادی بر آن در نمایی روش، سلول‌های آپوپتودیک اولیه با هنگام مترامک سیز کم رنگ و غشا سیتوپلاسمی سالم از سلول‌های آپوپتودیک ناتمامی با هنگام مترامک قرمز و قطعه‌قطعه قابل تفکیک بودند. سلول‌های تکنوپتودیک نیز به رنگ زرد متمایل به قرمز و یک دست و بدون قطعه‌قطعه شده هنگام مشخص و سلول‌های سالم نیز به رنگ سبز پرنگ هستند.

نتایج

ارزیابی تعداد کل‌ویا

در هر سه کمپلکس بالادیمویی کاشت یافت و برای که در سلول‌های تیمار شده با کمپلکس ۱ تعداد کل‌ویا در غلتک‌های بالای ۱۰۰ میکروگرم بر میلی لیتر کاهش یافت و در غلتگ‌های بالای ۲۰ میکروگرم بر میلی لیتر هیچ کاهشی دیده نشد.
برمایند سلول‌های زنده، آپوپتوزی و نکروپتیک بررسی شدند (تکراری ۲۰۱۲). نتایج این رنگ‌آمیزی‌ها در جدول ۱ آمده، نشان داد که افزایش غلظت هر سه کمپلکس بالادیوب درصد سلول‌های آپوپتوزی و نکروپتیک نسبت به سلول‌های سالم افزایش یافته و در این زمره سلول‌های آپوپتوزی خلیه بیش از درصد سلول‌های نکروپتیک افزایش می‌یابد. همچنین، تکراری ۲۰۱۱ نگاهی آن‌ها این که با افزایش غلظت هر سه کمپلکس، عادی سلول‌های پدیده‌گذاری شده کاهش دیده می‌کنند و کمترین غلظت مؤثر کمپلکس‌های ۱، ۲ و ۳ به ترتیب و امکان‌پذیر بر می‌یابد است (نمره‌دار ۲۰۱۰ و جدول ۱).

جدول ۱: درصد سلول‌های زنده، آپوپتوزی و نکروپتیک سلول‌های سرطان معده که با دوزه‌های مختلف کمپلکس‌های ۱، ۲، ۳ تیمار شده‌اند.

<table>
<thead>
<tr>
<th>کمپلکس ۱</th>
<th>کمپلکس ۲</th>
<th>کمپلکس ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت</td>
<td>درصد</td>
<td>غلظت</td>
</tr>
<tr>
<td>سلول‌های نکروپتیک</td>
<td>۵۰/۰۰۰/۹۵/۹۹</td>
<td>سلول‌های نکروپتیک</td>
</tr>
<tr>
<td>سلول‌های آپوپتوزی</td>
<td>۵۰/۰۰۰/۵۰/۵۰</td>
<td>سلول‌های آپوپتوزی</td>
</tr>
<tr>
<td>سلول‌های زنده</td>
<td>۵۰/۰۰۰/۵۰/۵۰</td>
<td>سلول‌های زنده</td>
</tr>
<tr>
<td>درصد خودکار</td>
<td>۱۰/۵۰/۵۰</td>
<td>درصد خودکار</td>
</tr>
</tbody>
</table>

توجه: تصاویر ۱ رنگ‌آمیزی سلول‌ها با روش رنگ‌آمیزی آکادنی اورژنت/نیلیوراپید. بعده از هفت روز کشت در حضور غلظت‌های مختلف کمپلکس‌های ۱، ۲ و ۳، در نکروپتیک نیلیوراپود و آپوپتوزی Nliveفس (درالافشل) در حالی که غلظت‌های ۲۰ و ۲۰۱ میکروگرم بر میلی‌لیتر مایع است. تعداد سلول‌های کم در نکروپتیک کشت سلولی دیده می‌شود می‌باشد.
پلاژوم انجام شود که نسبت به سلول‌های طبیعی کمتر سمی بوده و نسبت به سلول‌های بدخیم نوان تخربی بالا داشته باشد. بنابراین، از سال 1971 چندین آنالوگ سیس پلاتین‌وارد فاز آزمایش‌های بالینی شده‌است. به طوری که در اورا از اکرایل پلاتین‌های عنوان اولین خط درمان در سرطان مناطقی دهمه کلورکمال به همراه 5- فلوترووراسیل و فولیکوژید به‌طور مشابه درمان یافته‌اند.

بحث و نتیجه‌گیری

در طی ۲۵ سال گذشته، سیس پلاتین‌های درمان انواع نتوپلاسم‌ها استفاده شده‌است، با این حال استفاده از این دارو به‌طوری‌که به سیس پلاتین‌های محدودی‌تری چشمگیری دارد. به عنوان مثال، از دو بیماری از بین شده‌های سالم بدن آسیب می‌پذیرند. این محدودیت‌ها باعث شده‌است شایعی برای ساخت داروهایی بر پایه پلاتین‌هایی با
در مطالعه نرگس آریان پور و همکاران، سه کمپلکس بالادیوم جدید برای همانلیوکیت با آنزیم اوراکلین و آنزیم ترکیبی در رده سلول‌های [Pd(bpy)(Bu-dtc)]CI گزارش شد. در دستورالعمل [Pd(bpy)(hex-dtc)]CI کمپلکس بالادیوم سرطان کبد، پیشنهاد حساسیت را در مقابل (HepG2) کمپلکس بالادیوم سرطان تخمدان (OV2008) (پیشنهاد تخمدان از دو نشان داده (17).

کمپلکس بالادیوم اثر سینتیکی بالقوه در سرطان دانش‌پژوهان می‌تواند کمک کند. پژوهشگران در مطالعه این کمپلکس بالادیوم سرطانی معرفت و مطالعه پژوهشی در زمینه آن حریق در شرایط آزمایشگاهی انجام پژوهش‌های تکمیلی به عنوان داروی جایگزین در درمان سرطان محسوب شود.

شکل و قدرت‌آمیزی: نویسندگان خود را می‌دانند که از کمپلکس بالادیوم به دنبال تحقیقات دانشجویی و مدیریت ژنتیک انشغال علوم پزشکی ارتباط دارند. مطالعه بالادیوم به خاطر همکاران در این مطالعه قدرت‌آمیزی نامید.

این مقاله بر خلاف آنها ثبت شده که در سازه‌های پزشکی ارتباط است و نویسندگان اعلام می‌دارند که هیچ‌گونه تضاد منافعی ندارند.

مجله دانشگاه علوم پزشکی گیلان/ دوره پیست و رویدادهای پزشکی/ شماره 2/ تیر 1393

Anti-cancer Effects of Palladium Complexes on Gastric Cancer Cell Line (AGS)

Mazani M.(PhD)1-Hadizadeh Sh.(MSc)1-2-Najafzadeh N.(PhD)2-Amani M.(PhD)1-Mansouri Torshizi H.(PhD)1

*Corresponding Address: Department of Anatomy and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran

Email: n.najafzade@arums.ac.ir

Received: 18 Jan/2013 Accepted : 28 Jan/2014

Abstract

Introduction: Chemotherapy drugs are used to treat various types of neoplasms. In doing so, such drugs leave many side effects. Furthermore, in recent years, several attempts have been made to develop drugs based on platinum or palladium which have low toxicity and is more sensitive to the drug-resistant diseases.

Objective: To evaluate the effects of newly synthetized palladium complexes, as anticancer drugs, on gastric cancer cell line (AGS).

Materials & Methods: In this study, gastric cancer cell line (AGS) was purchased from Pasteur Institute, Iran and cultivated in RPMI 1640 and then, the cytotoxic effects of various concentrations of newly synthesized complexes were evaluated by clonogenic assay and acidine orange/ethidium bromide staining.

Results: The results showed that the new complexes have different effects in concentration-dependent manner so that complex1 ≥ 0.1 μg /ml, complex2 ≥ 0.05 μg /ml and complex3 ≥ 1 μg /ml lead to cell death by apoptosis and necrosis. Comparison of the number of colonies formed after treatment with concentrations of palladium complexes showed significant differences, compared with controls (P<0.001).

Conclusion: In this study, it was demonstrated that the use of low concentrations of palladium complexes of dithiocarbamate derivative increases apoptosis and necrosis, also, reduces the number of cell colonies, thus, it can be considered as an alternative drug for the treatment of gastric cancer.

Conflict of interest: non declared

Keywords: Apoptosis/ Necrosis/ Palladium/ Stomach Neoplasms/ Tumor Stem Cell

Please cite this article as: Mazani M, Hadizadeh Sh, Najafzadeh N, Amani M, Mansouri Torshizi H. Anti-cancer Effects of Palladium Complexes on Gastric Cancer Cell Line (AGS). J of Guilan University of Med Sci 2014; 23(90):72-79. [Text in Persian]

1. Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
2. Department of Anatomy and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
3. Department of Biophysics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
4. Department of Chemistry, Faculty of Sciences, Sistan and Baluchestan, Zahedan, Iran