بررسی در مورد تخمین تعداد سیثبتان نخاعی رفلکس H

دکتر محمد رضا علیلوی گویایی - دکتر علی رضا اشرف

* استاد بخش پزشکی فیزیکی و توانبخشی دانشگاه علوم پزشکی شیراز

** دستیار بخش پزشکی فیزیکی و توانبخشی دانشگاه علوم پزشکی شیراز

چکیده

بیانیه در مورد رفلکس H، ریشه ریشه‌ای S1 و در دوگانه آن به اکثر مختلف اجزای رادیکولوپاتی است، قوس مرکزی رفلکس H توسط با حساسیت

نخاعی بالایی در این ارگ کمک کننده است.

هدف: هدف این مطالعه بررسی تأثیر زمان فعالیت قلبی S1 و تخمین تعداد سیثبتان موجود در رفلکس H در این سلامت از نخاعی می‌باشد.

مواد و روش: 40 نفر داوطلب سالم در این مطالعه شرکت داشتند. 24 نفر از آنها (60%) و 16 نفر (39%) جزء دولتی بودند. دو گروه با جابجایی محیطی منتشر شدند. سپس بدون جابجایی مدت 13 سال روی نکته کردند.

در اکثر هادیاهاتی شاهکار، یک اکتسو که سالانه از دستورالعمل مشابه از این دستورالعمل استفاده می‌کرد. در هر روز، یک مورد روی نکته که شاکاری و دو مورد از این دستورالعمل استفاده می‌کرد. در هر روز، یک مورد روی نکته که شاکاری و دو مورد از این دستورالعمل استفاده می‌کرد.

نتایج: بیانیه در مورد جدائی هر سیثبتان 3 هزار نایه است. زمان/90/16، میزان داده که در نتیجه S1 تا 1 هزار نایه می‌باشد.

کلید واژه‌ها: رفلکس، سیثبتان، حساسیت صریح

مقدمه

رفلکس H برای اولین بار در سال 1918 توسط آقای

هوفمن توصیف گردید. روش لیت معمولی به این

اندام تحالانی برای تحقیق ظرفیت در حفره

پلیپنال و بیش از عضله سلونی می‌باشد(1). اما

چن‌سردی طولانی را دربرمی گردد. حساسیت آن در

تشخیص ضایعات خفیف ریزه اول ساق کلام کم است.

برای غلبه بر این مشکل، قوس مرکزی رفلکس H

بسته آتی به دریم پیشنهاد گردید که باعث

توختم آقای پزشکی و همکاران پیشنهاد گردید که بایگ

تلخکی عصب در با ریزه اول ساق کلام به طور مستقیم

در نزدیکی محل خروج آن از ستون فقرات تحقیق می‌

گردد(2،3).

اکثراً محققان مشخصان که تناهی سیثبتان بین رشته

آوران (۴،۵) و افراد این رفلکس در نخاع وجود دارد(6).

مجله دانشکده پزشکی دانشگاه علوم پزشکی گیلان، سال سی‌و‌پنجم / شهره ۴۱ / پاییز ۱۳۸۳

10
دکتر محمد رضا علوی‌نیا - دکتر علی‌رضا اشرف

سالمان افراد داوطلب عبارت بود از: عدم شکایت از
کمره، نداشتن سابقه بیماری‌های نظیر دیسک
مهربان، بیماری کبدی، مشکلات خونی،
بیماری‌های روماتیسم و ویئری ای افراد
نیز طبیعی بود به علت، رفتن کاهش اثر منکر و طبیعی,

قدرت عضلاتی کامل و متعادلی حس طبیعی

داشته و بخوبی می‌توانند روی پنجه و پاشنه‌پاره
بروند. پس از توضیح شفاهی و معاونی بالینی، فرد روز
شکم (Prone) می‌خوابید و پای وی انگل نصف آوریان
می‌گردد. آماده‌شدن در دام ویا معمولی اتان انجام می‌شود
و در صورت سرد بودن ادامه، یا گرم نمودن آن، دمای
مطبوع حاصل می‌گردد و به وی توصیه می‌شود که
راحت ترین وضعیت ممکن در این حالت داشته
باشد.

دسیگنگر مورد استفاده ۲۰۰۰ بود

که مشخصات فنی آن هنجار آزمایش بدنی صورت
تنهیمی می‌گردد:

۱- الکترودهای ثبت کننده از نوع سطحی بودن که قطر
هم کافی نمی‌سایند و فاصله آن از هم ۲/۵ سانتی
متر بود.

۲- الکترودهای تحریک کننده نیز از نوع سطحی بودن که
قطر هر کدام از ساین متر و فاصله آن از هم ۲ سانتی
متر بود.

۳- فرکانس فیلتر : بین ۲ تا ۱۰ کیلو هرتز تنظیم
شده.

۴- مدت تحریک : ۱ هزار ثانیه (دریت رفلکس) و
۲/۵ هزار ثانیه (دریت امواج M و F محتوی).

۵- سپت Speed : ۵ هزار ثانیه به ازای هر
خانه صفحه.

۶- حساسیت دسیگنگر، به میزان بین ۱/۰ تا ۲ هزار
ویل به ازای هر خانه صفحه تنظیم شده.
پروسی در مورد تخمین... صورت می‌گرفت (شکل شماره ۱). شدت تحریک طوری تنظیم می‌گردید که بر دو موج H و M در نظر گرفته شد (8). آماده برای مرحله تأثیر امواج H و M و آماده آنها اندازه گیری و ثبت می‌شد. در مرحله آخر، فاصله چین پوی‌پنتالن ناامن. فاصله چین پوی‌پنتالن ناامن و راه تحریک در اطراف F* مهیج موج تأثیر امواج F* M**-1.4 F سپس محاسبات زیر صورت پذیرفت:

- تحریک و سرعت مداوم عصبی رشته‌های حرکتی پروپزیمال از طریق فرمول ذلی محاسبه گردید (12):

\[
\text{سرعت هدایت رشته حرکتی پروپزیمال} \times \text{Metrote} = \frac{\text{تأخیر موج } M \times \text{همایون } }{\text{تأخیر موج } H \times \text{همایون } } \times \text{تأخیر موج } F \times \text{همایون }
\]

\[
= \text{سرعت هدایت حرکتی پروپزیمال} \times \text{مارکت } \times \text{موج } \times \text{همایون } \times \text{موج } \times \text{همایون } \times \text{موج }
\]

\[
= \text{سرعت هدایت حرکتی پروپزیمال} \times \text{مارکت } \times \text{موج } \times \text{همایون } \times \text{موج } \times \text{همایون } \times \text{موج }
\]

19 و حداقل ۱۵ سال پوی‌پنتالن سانتی کلم افراد/۷۳۷ سالیدست. آم. در تحریک عصب تیبال در پشت زانو واقع می‌شود و تحریک ساق، به‌صورت بیشتر و پشت تحریک، مقدار امواج F و H، M چنین می‌باشد. (جدول شماره ۱).

جدول شماره ۱: مقادیر امواج از تحریک عصب تیبال در پشت زانو و پشت تحریک ساق موج

<table>
<thead>
<tr>
<th>موج</th>
<th>امواج/معنی</th>
<th>ناامنی (peak latency) (هزاران ثانیه)</th>
<th>ناامنی (onset latency) (هزاران ثانیه)</th>
<th>ناامنی (miyio وlt)</th>
<th>ناامنی (miyio وlt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>۱/۵</td>
<td>۴/۳</td>
<td>۴/۳</td>
<td>۱/۶</td>
<td>۱/۶</td>
</tr>
<tr>
<td>H</td>
<td>۴/۵</td>
<td>۳/۴/۵</td>
<td>۳/۴/۵</td>
<td>۱/۳</td>
<td>۱/۳</td>
</tr>
<tr>
<td>F</td>
<td>۳/۰/۷</td>
<td>۳/۰/۷</td>
<td>۳/۰/۷</td>
<td>۱/۵</td>
<td>۱/۵</td>
</tr>
</tbody>
</table>

نتایج با دو تن علائم ۴۰ نفر بودند که از این تعداد ۲۶ نفر موجد (۶۵%) و ۱۴ نفر زن (۳۵%) بودند. حداقل سن افراد مورد مطالعه...

جلقه دانشگاه بزیکشی دانشگاه علوم پزشکی گیلان/ سال سی و دومه / شماره ۵۱ / پاییز ۱۳۸۲
در پایان، بعد از انجام محاسبات، متوسط زمان عبور جریان از قطعه‌نخاعی S1 (0/6 ± 0/1) آزم و نهایی محاسبه گردید (جدول شماره 3).

جدول شماره 3: میزان تأخیر و سرعت هدایت رشته‌های عصبی در S1 قوس مکری رقفلکس و تخمین زمان عبور جریان از قطب‌نخاعی S1

<table>
<thead>
<tr>
<th>میانگین</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت (متر بر ثانیه)</td>
<td>رشته عصبی حرکتی</td>
</tr>
<tr>
<td>0/6/8</td>
<td>0/15/2/3</td>
</tr>
<tr>
<td>0/6/9</td>
<td>0/28/0/76</td>
</tr>
</tbody>
</table>

۱/۷(peak latency) آزم و نهایی، H موج

اشتخال معنی‌داری در دو جنس حاصل گردید (P<0/01).

بحث و نتیجه‌گیری

هدف اصلی این مطالعه بخشهای نهایی در ایجاد پایداری و بازیابی فعالیت میانگین تأخیر قوس مکری رقفلکس H برای (28/7 ± 0/4) هزار ثانیه به دست آمد که این میزان در مردان (25/0 ± 0/4) هزار ثانیه بود و اختلال معنی‌داری بین دو جنس حاصل گردید (P<0/01).

میانگین فاصله چین پوپلیتال نا سوزن مونوپلار (26±3) میلی متر و میانگین فاصله سوزن در تأثیر مهره‌های تا (72) میلی متر محاسبه گردید و در هرس مورد فوق، اختلال معنی‌داری در مقایسه دو جنس دیده نشد (P<0/001).

دکتر محمد رضا علویانی - دکتر علیرضا اشرف

مقادیر امواج S1 مکری، حاصل از تحریک مستقیم ریشه اول ساکارل در کمر چین تایپیچی را در پی داشت (جدول شماره 2).
با کمترین شدت لازم توجه شده است.
در این مطالعه، اصل سوزن مونیولاری تا پایان مصوب S1 در نظر گرفته شد و میزان آن (79 ± 4) میلی‌متر محسوب گردید. این میزان به عدّه پیشنهادی آقای «فو» و همکاران (35) میلی‌متر بی‌سار نزدیک است (10).
ایشان این اندازه گیری را با مطالعه تشخیصی بر روی
15 جسد صورت داده‌ها بود.
میانگین سرعت رشته‌های حركتی و حسی پروژیمال به ترتیب (146 ± 6) متر بر ثانیه و (140 ± 7) متر بر ثانیه محاسبه گردید و در مقایسه موردی و یک تفاوت آماری معناداری به دست آمد. شایع علت این
سئوال، بلندبود اندام تحتانی آقای «فو» و طرف دیگر
پیشرود میزان تأخیر رنگی رشته‌های حسی
ورانکین پروژیمال در ان جنس باشند که با توجه به
فرمول
زمان / سانتی‌متر = سرعت. در افزایش صورت و مخرج
سرعت چندانی نکته تأثیر واقع نمی‌شود.

ثانیه بعدی‌های دو، دو بندانی (10) که در مقاله به نتایج
کسب شده‌اکنون نزدیک است.

میانگین تأخیر زمانی قوس مرکزی رفلکس H، (28 ± 277/30) هزار ثانیه محاسبه گردید. مقایسه با میزان‌های (32 ± 4)، هزار ثانیه مطلاعه آقای «پیژ» و همکاران (7) هزار ثانیه در مطالعه دکتر فواوینی و
همکاران (9) هزار ثانیه در مطالعه آقای «فو» و
همکاران (10)، نشان داد که تأخیر محاسبه شده‌اکنون به
مقاوم بی‌پیشنهاد آنها بی‌سار نزدیک است.
در مطالعه‌های حاضر، زمان تخنیمی عبور جریان از قطعه
نخاعی S1 (360/199) هزار ثانیه محاسبه گردید.

بررسی در مورد تخنیم...
دکتر محمد رضا علیپوری قوامی - دکتر علیرضا اشرفی

Study on H- Reflex: Estimated Number of Synapses at S1 Cord Level

Alavian Ghavanini MR., Ashrafi AR.
Abstract

Introduction: The main clinical application of the H-reflex is: evaluation of S1 nerve root such as radiculopathy. An attempt has been made to reduce the pathway over which H-reflex can be obtained in the hope for localizing a lesion to the S1 nerve root; So S1 central loop has been suggested.

Objective: The main goal of this investigation is to estimate H-reflex number of synapses.

Materials and Methods: 40 healthy adult volunteers (26 males, 14 females) with mean age of (37.7) years participated in this study. They were positioned comfortably in the prone, with the feet off the edge of the plinth. Recording electrodes were positioned at mid point of a line connecting the mid popliteal crease to the proximal flare of the medial malleolus. Stimulation was applied at tibial nerve in popliteal fossa and H& F& M waves were recorded. Without any change in location of recording electrodes, a monopolar needle was inserted as cathode at a point 1 cm medial to the posterior superior iliac spine, perpendicular to the frontal plane. The anode electrode was placed over the anterior superior iliac spine, then M & H waves of central loop were recorded. After processing the data, sacral cord conduction delay was determined by this formula:

* Sacral cord conduction delay = central loop of H-reflex – delays of the proximal motor & sensory fibers in central loop.

Results: Central loop of H-reflex was: (6.77 ± 0.28) ms and sacral cord conduction delay was: (1/09 ± 0.06) ms.

Conclusion: This study is in accord with previous investigations indicative of 1 synapse at S1 cord level for H-reflex.

Key word: Neural Conduction/ Reflex, Monocynaptic