Volume 33, Issue 3 (10-2024)                   JGUMS 2024, 33(3): 258-269 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behboudi H, Azaripour E. Glaucoma; Epidemiology, Risk Factors, Diagnosis, and Treatment: A Brief Review. JGUMS 2024; 33 (3) :258-269
URL: http://journal.gums.ac.ir/article-1-2658-en.html
1- Department of Eye, Eye Research Center, School of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran.
Full-Text [PDF 4732 kb]   (328 Downloads)     |   Abstract (HTML)  (1893 Views)
Full-Text:   (800 Views)
Introduction
Modifying and optimizing daily dietary habits can prevent or alter the progression of various ocular diseases, namely cataracts, age-related macular degeneration (AMD), diabetic retinopathy, glaucoma, and dry eye syndrome. This review study focuses on the first three conditions, as they represent the leading causes of blindness and have well-documented associations with dietary patterns.

Methods
This was a review study. Relevant literature was retrieved by searching various keywords, such as cataract, AMD, type 2 diabetes, diabetic retinopathy, and diet in PubMed and MEDLINE databases for articles published between 2010 and 2023. The most pertinent studies were selected, translated into Persian where necessary, and analyzed for this review.

Results 

Cataract

Cataracts are the leading cause of blindness worldwide, affecting approximately 95 million individuals. Recent studies suggest that nutrition may significantly influence cataract formation and progression [1]. While cataractogenesis is a multifactorial process, oxidative damage is a primary contributor. Oxidative stress occurs when there is an imbalance between reactive oxygen species (ROS) production and cellular antioxidant defense mechanisms. Recognized oxidative risk factors include smoking, ultraviolet-B (UV-B) radiation exposure, and diabetes [2، 3].
Plant-based diets, rich in antioxidant compounds, have the potential to protect cells from chronic oxidative damage [4-6]. On average, plant-derived foods contain 64 times more antioxidants than animal-based products [7]. Furthermore, high-temperature cooking of animal products generates heterocyclic amines (HCAs), which have been linked to cataract formation [8]. Diets rich in fruits, vegetables, whole grains, nuts, and legumes that minimize animal product consumption are beneficial for cataract prevention.

AMD
AMD is the most common cause of blindness in developed countries, accounting for over 90% of blindness cases. Its incidence is rising in developing nations as well. Multiple studies have demonstrated a strong correlation between dietary patterns and AMD risk [13]. Three key pathophysiological mechanisms suggest dietary influence on AMD development.
Macular pigments: Macular pigments, including lutein, zeaxanthin, and meso-zeaxanthin, play a critical role in protecting the retina and macula from oxidative damage caused by short-wavelength light (blue light) [14]. These pigments are entirely derived from dietary sources and are most abundant in dark green leafy vegetables, including kale and spinach, as well as yellow-orange fruits and other vegetables [15]. The selective uptake of xanthophylls by retinal cells and their high concentration in the retina highlight their importance in retinal health [16، 17].
Inflammation: Chronic inflammation is a well-recognized factor in AMD pathogenesis. Drusen, the hallmark pathological feature of AMD, contains inflammatory components such as fibrinogen, vitronectin, and C-reactive protein (CRP) [20, 21]. CRP is a low-grade inflammatory marker associated with chronic conditions, such as cardiovascular disease, type 2 diabetes, and certain malignancies. Aging-associated alterations in the balance of pro-inflammatory and anti-inflammatory cytokines contribute to a persistent low-grade inflammatory state, increasing the risk of AMD. Recent systematic reviews and meta-analyses indicate that vegan and vegetarian diets are associated with lower CRP levels (mean differences of -0.54 mg/L, P<0.0001, and -0.25 mg/L, P=0.05, respectively) compared to conventional diets in both healthy and diseased populations. However, further research is needed to establish dietary interventions for AMD prevention [21].
Oxidative damage: Aging leads to a decline in the efficiency of endogenous antioxidant defense systems and an increase in oxidative burden. Consequently, dietary intake of exogenous antioxidants is essential for ocular aging support. Retinal tissue is highly susceptible to oxidative stress due to prolonged light exposure, high oxygen consumption, and the subsequent generation of free oxygen radicals, which adversely affect retinal polyunsaturated fatty acids [23]. Oxidative stress also contributes to AMD pathogenesis via angiogenesis and inflammation [24]. Oxidative damage to the retinal pigment epithelium may trigger apoptotic cell death, exacerbating AMD progression [25]. Furthermore, chronic oxidative stress promotes the accumulation of drusen proteins in the retina [26].

Type 2 diabetic retinopathy
Globally, an estimated 438 million individuals are affected by type 2 diabetes, reflecting a 49% increase since 1990 [31]. Diabetic microvascular and macrovascular complications significantly impact mortality rates and quality of life. Lifestyle and dietary modifications play a crucial role in preventing and managing type 2 diabetes to preserve vision and overall health.

Pathophysiological considerations
Hyperglycemia is a recognized driver of cellular damage, primarily via metabolic pathways, such as the polyol pathway, non-enzymatic glycation of proteins, hexosamine flux, and protein kinase C activation. Dietary interventions targeting these pathways can reduce inflammatory and oxidative stress markers.
Non-enzymatic glycation of proteins is a critical contributor to advanced glycation end-product (AGE) formation, which plays a key role in the pathophysiology of diabetic retinopathy. Although AGEs are naturally occurring, excessive accumulation is pathogenic. Animal-derived products, particularly beef and cheese, contain the highest AGE concentrations, followed by pork, poultry, fish, and eggs. Cooking methods involving high temperatures, such as grilling, frying, and roasting, accelerate AGE formation. By contrast, plant-based foods, even after cooking, contain minimal AGE levels [37].

Conclusion
Substantial evidence supports the role of Mediterranean and plant-based diets, rich in fruits, vegetables, legumes, whole grains, and nuts, in reducing the risk of vision loss associated with cataracts, AMD, and diabetic retinopathy. These dietary patterns may also offer protection against other ocular conditions with underlying pathogenic mechanisms involving chronic oxidative stress, inflammation, or macular pigment alterations. However, most existing research in this domain is observational. Further longitudinal, randomized controlled trials are required to establish definitive causal links between dietary patterns and ocular diseases.

Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.

Funding
This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions
Conceptualization, study design, supervision, review and editing: Ebrahim Azaryapour; Project administration, technical, or material support: Hassan Behboudi; Writing the original draft: All authors.

Conflicts of interest
The authors declared no conflict of interest.
 



References
  1. Leffler CT, Schwartz SG, Giliberti FM, Young MT, Bermudez D.  What was glaucoma called before the 20th century? Ophthalmology and Eye Diseases. 2015; 7:21-33. [DOI:10.4137/OED.S32004] [PMID] [PMCID] 
  2. Weinreb RN, Aung T, Medeiros FA: The pathophysiology and treatment of glaucoma: A review. JAMA. 2014; 311(18):1901-11. [DOI:10.1001/jama.2014.3192] [PMID] [PMCID] 
  3. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017; 390(10108):2183-93.  [DOI:10.1016/S0140-6736(17)31469-1] [PMID] 
  4. Tian H, Li L, Song F. Study on the deformations of the lamina cribrosa during glaucoma. Acta Biomaterialia. 2017; 55:340-348.[DOI:10.1016/j.actbio.2017.03.028] [PMID] 
  5. Shoji T, Kuroda H, Suzuki M, Ibuki H, Araie M, Yoneya S. Glaucomatous changes in lamina pores shape within the lamina cribrosa using wide bandwidth, femto-second mode-locked laser OCT. PLoS One. 2017; 12(7):e0181675. [DOI:10.1371/journal.pone.0181675] [PMID] [PMCID] 
  6. Erb C. [Functional disorders in the chronological progression of glaucoma (German)]. Der Ophthalmologe. 2015; 112(5):402-9. [DOI:10.1007/s00347-015-0005-y] [PMID] 
  7. Quigley HA. Glaucoma. Lancet. 2011; 377(9774):1367-77.  [DOI:10.1016/S0140-6736(10)61423-7] [PMID] 
  8. Greslechner R, Helbig H, Spiegel D. [Secondary open-angle glaucoma: Pseudoexfoliative glaucoma, pigmentary glaucoma and neovascular glaucoma (German)]. Der Ophthalmologe. 2022; 119(4):425-38. [DOI:10.1007/s00347-022-01609-3] [PMID] 
  9. Chan MP, Grossi CM, Khawaja AP, Yip JL, Khaw KT, Patel PJ, et al. Associations with intraocular pressure in a large cohort: Results from the UK Biobank.Ophthalmology 2016; 123(4):771-82. [DOI:10.1016/j.ophtha.2015.11.031] [PMID] [PMCID] 
  10. Hatanaka M, Babic M, Susanna R Jr. Reproducibility of the mean, fluctuation, and IOP peak in the diurnal tension curve. Journal of Glaucoma. 2013; 22(5):390-2. [DOI:10.1097/IJG.0b013e3182447a03] [PMID] 
  11. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus. 2020; 12:e11686. [DOI:10.7759/cureus.11686] 
  12. Zhang N, Wang J, Chen B, Li Y, Jiang B. Prevalence of primary angle closure glaucoma in the last 20 years: A meta-analysis and systematic review. Frontiers in Medicine. 2021; 7:624179. [DOI:10.3389/fmed.2020.624179] [PMID] [PMCID] 
  13. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: The Tajimi Study. Ophthalmology. 2004; 111(9):1641-8.[DOI:10.1016/j.ophtha.2004.03.029] [PMID] 
  14. Zhao J, Solano MM, Oldenburg CE, Liu T, Wang Y, Wang N, et al. Prevalence of normal-tension glaucoma in the Chinese population: A systematic review and meta-analysis. American Journal of Ophthalmology. 2019; 199:101-10. [DOI:10.1016/j.ajo.2018.10.017] [PMID] 
  15. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Archives of Ophthalmology. 1991; 109(8):1090-5. [DOI:10.1001/archopht.1991.01080080050026] [PMID] 
  16. Wang N, Xie X, Yang D, Xian J, Li Y, Ren R, et al. The Beijing Intracranial and Intraocular Pressure (iCOP) study. Ophthalmology. 2012; 119(10):2065-73.e1. [DOI:10.1016/j.ophtha.2012.03.054] [PMID] 
  17. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S,  et al. Cerebrospinal fluid pressure in glaucoma: A prospective study. Ophthalmology. 2010; 117(2):259-66. [DOI:10.1016/j.ophtha.2009.06.058] [PMID] 
  18. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Progress in Retinal and Eye Research. 2012; 31(2):152-81. [DOI:10.1016/j.preteyeres.2011.11.002] [PMID] 
  19. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Survey of Ophthalmology. 1994; 39(1):23-42. [DOI:10.1016/S0039-6257(05)80042-6] [PMID] 
  20. Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. ophthalmology. 2008; 115(8):1340-6.[DOI:10.1016/j.ophtha.2007.11.008] [PMID] [PMCID] 
  21. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Archives of Ophthalmology (Chicago, Ill. : 1960). 2004; 122(6):827-37. [DOI:10.1001/archopht.122.6.827] [PMID] 
  22. Chauhan BC, O'Leary N, AlMobarak FA, Reis ASC, Yang H, Sharpe GP, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013; 120(3):535-43. [DOI:10.1016/j.ophtha.2012.09.055] [PMID] [PMCID] 
  23. Medeiros FA, Zangwill LM, Anderson DR, Liebmann JM, Girkin CA, Harwerth RS, et al estimating the rate of retinal ganglion cell loss in glaucoma. American Journal of Ophthalmology. 2012; 154(5):814-24.e1.  [DOI:10.1016/j.ajo.2012.04.022] [PMID] [PMCID] 
  24. Strouthidis NG, Gardiner SK, Sinapis C,Burgoyne CF, Garway-Heath DF. The spatial pattern of neuroretinal rim loss in ocular hypertension. Investigative Ophthalmology & Visual Science. 2009; 50(8):3737-42. [DOI:10.1167/iovs.08-2844] [PMID] 
  25. Fard MA, Afzali M, Abdi P, Chen R, Yaseri M, Azaripour E, et al. Optic nerve head morphology in nonarteritic anterior ischemic optic neuropathy compared to open-angle glaucoma. Investigative Ophthalmology & Visual Science. 2016; 57(11):4632-40. [DOI:10.1167/iovs.16-19442] [PMID] 
  26. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology (Chicago, Ill. : 1960). 2002; 120(6):701-13; discussion 829-30.  [DOI:10.1001/archopht.120.6.701] [PMID] 
  27. Al-Rajhi A, Ambrus A, Daly M, Lum F. Primary open-angle glaucoma preferred practice pattern. California: American Academy of Ophthalmology; 2020. [Link]
  28. Gaton DD, Sagara T, Lindsey JD, Gabelt BT, Kaufman PL, Weinreb RN. Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F (2 alpha)-isopropyl ester treatment. Archives of Ophthalmology. 2001; 119(8):1165–70. [DOI:10.1001/archopht.119.8.1165] [PMID] 
  29. Stewart WC, Konstas AG, Nelson LA, Kruft B. Meta-analysis of 24-hour intraocular pressure studies evaluating the efficacy of glaucoma medicines. Ophthalmology. 2008; 115(7):1117-22.e1.  [DOI:10.1016/j.ophtha.2007.10.004] [PMID] 
  30. Liu JH, Kripke DF, Weinreb RN. Comparison of the nocturnal effects of once-daily timolol and latanoprost on intraocular pressure. American Journal of Ophthalmology. 2004; 138(3):389-95. [DOI:10.1016/j.ajo.2004.04.022] [PMID] 
  31. Mansouri K, Medeiros FA, Weinreb RN. Global rates of glaucoma surgery. Graefe's Archive for Clinical and Experimental Ophthalmology. 2013; 251(11):2609-15. [DOI:10.1007/s00417-013-2464-7] [PMID] 
  32. Odberg T, Sandvik L. The medium and long-term efficacy of primary argon laser trabeculoplasty in avoiding topical medication in open angle glaucoma.  Acta Ophthalmologica Scandinavica. 1999; 77(2):176-81. [DOI:10.1034/j.1600-0420.1999.770212.x] [PMID] 
  33. Shingleton BJ, Richter CU, Dharma SK, Tong L, Bellows AR, Hutchinson BT, et al. Long-term efficacy of argon laser trabeculoplasty:a 10-year follow-up study. Ophthalmology. 1993; 100(9):1324-9.  [DOI:10.1016/S0161-6420(93)31480-6] [PMID] 
  34. Shingleton BJ, Richter CU, Bellows AR,Hutchinson BT, Glynn RJ. Long-term efficacy of argon laser trabeculoplasty.  Ophthalmology. 1987; 94(12):1513-8. [DOI:10.1016/S0161-6420(87)33253-1] [PMID] 
  35. Sawchyn AK, Slabaugh MA. Innovations and adaptations in trabeculectomy. Current Opinion in Ophthalmology. 2016; 27(2):158-63. [DOI:10.1097/ICU.0000000000000236] [PMID] 
  36. Jayaram H, Scawn R, Pooley F, Chiang M, Bunce C, Strouthidis NG, et al. Long-term outcomes of trabeculectomy augmented with mitomycin c undertaken within the first 2 years of life. Ophthalmology. 2015; 122(11):2216-22.  [DOI:10.1016/j.ophtha.2015.07.028] [PMID] 
  37. Ayyala RS, Chaudhry AL, Okogbaa CB, Zurakowski D. Comparison of surgical outcomes between canaloplasty and trabeculectomy at 12 months’ follow-up. Ophthalmology. 2011; 118(12):2427-33. [DOI:10.1016/j.ophtha.2011.05.021] [PMID] 
  38. Soltani-Moghadam R, Azaripour E, Alizadeh Y, Behboudi H, Moravvej Z, Medghalchi A, et al. Clinical outcomes of viscocanalostomy and phacoviscocanalostomy in primary open angle glaucoma: Two years follow-up. European Journal of Ophthalmology. 2022; 32:2880-2885. [DOI:10.1177/11206721211064003] [PMID] 
  39. Azaripour E, Khakpour Y, Soltani-Moghadam R, Moravvej Z, Medghalchi A, Behboudi H, et al. Outcomes of phaco-viscocanalostomy in primary open angle glaucoma versus pseudoexfoliation glaucoma. Journal of Ophthalmic & Vision Research. 2021; 16(4):566-73. [DOI:10.18502/jovr.v16i4.9746] [PMID] [PMCID] 
  40. Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. American Journal of Ophthalmology. 2012; 153(5):789-803.e2. [DOI:10.1016/j.ajo.2011.10.026] [PMID] [PMCID] 
  41. Gurnani B, Tripathy K. Minimally invasive glaucoma surgery. 2023 Aug 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. [PMID]
  42. He M, Foster PJ, Johnson GJ, Khaw PT. Angle-closure glaucoma in East Asian and European people: Different diseases? Eye (Lond). 2006; 20(1):3-12.  [DOI:10.1038/sj.eye.6701797] [PMID] 
  43. Nongpiur ME, Ku JY, Aung T. Angle closure glaucoma: A mechanistic review. Current Opinion in Ophthalmology. 2011; 22(2):96-101. [DOI:10.1097/ICU.0b013e32834372b9] [PMID] 
  44. Sakai H, Morine-Shinjyo S, Shinzato M, Nakamura Y, Sakai M, Sawaguchi S. Uveal effusion in primary angle-closure glaucoma. Ophthalmology. 2005; 112(3):413-9. [DOI:10.1016/j.ophtha.2004.08.026] [PMID] 
  45. Lavanya R, Wong TY, Friedman DS, Aung HT, Alfred T, Gao H, et al. Determinants of angle closure in older Singaporeans.  Archives of Ophthalmology. 2008; 126(5):686-91. [DOI:10.1001/archopht.126.5.686] [PMID] 
  46. Sakata LM, Lavanya R, Friedman DS, Aung HT, Gao H, Kumar RS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008; 115(5):769-74. [DOI:10.1016/j.ophtha.2007.06.030] [PMID] 
  47. Wong HT, Lim MC, Sakata LM, Aung HT, Amerasinghe N, Friedman DS, et al. High-definition optical coherence tomography imaging of the iridocorneal angle of the eye. Archives of Ophthalmology. 2009; 127(3):256-60.  [DOI:10.1001/archophthalmol.2009.22] [PMID] 
  48. Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000; 107(12):2300-4. [DOI:10.1016/S0161-6420(00)00385-7] [PMID] 
  49. Wang M, Fang M, Bai YJ, Zhang WZ, Lin MK, Liu BQ, et al. Comparison of combined phacotrabeculectomy with trabeculectomy only in the treatment of primary angle-closure glaucoma. Chinese Medical Journal. 2012; 125(8):1429-33. [PMID]
  50. Tham CC, Kwong YY, Leung DY, Lam SW, Li FC, Chiu TY, et al. Phacoemulsification versus combined phacotrabeculectomy in medically uncontrolled chronic angle closure glaucoma with cataracts. Ophthalmology. 2009; 116(4):725-31, 731.e1-3.[DOI:10.1016/j.ophtha.2008.12.054] [PMID] 
  51. Xie J, Li W, Han B. The treatment of primary angle-closure glaucoma with cataract: A systematic review and meta-analysis of randomized controlled trails. Ophthalmology and Therapy.  2023; 12(2):675-89.  [DOI:10.1007/s40123-022-00639-z] [PMID] [PMCID] 
Review Paper: Review paper | Subject: Special
Received: 2023/10/30 | Accepted: 2023/11/15 | Published: 2024/10/1

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Guilan University of Medical Sciences

Designed & Developed by : Yektaweb