Volume 34, Issue 1 (3-2025)                   JGUMS 2025, 34(1): 8-27 | Back to browse issues page

Research code: IR.IAU.SRB.REC.1401.161
Ethics code: IR.IAU.SRB.REC.1401.161


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hajati Ziabari A, jahandideh A, akbarzadeh A, mortazavi P. A Review Study on the Fabrication and Use of Bioscaffolds and Biologically Simulated Bone Materials in Bone Regeneration. JGUMS 2025; 34 (1) :8-27
URL: http://journal.gums.ac.ir/article-1-2681-en.html
1- Department of Clinical Science, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
3- Department of Pathobiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Full-Text [PDF 9953 kb]   (382 Downloads)     |   Abstract (HTML)  (1344 Views)
Full-Text:   (1236 Views)
Introduction
Despite the promising prospects of cell therapies, the application of tissue engineering and stem cells has not yet reached clinical reality. In many cases, such as cell selection, delivery, viability and stability, the time-consuming nature of treatments, regulatory issues, high costs, and the need to obtain licenses from health regulatory agencies for compliance with medical ethics have created limitations [123]. However, the field of acellular biomaterials is evolving and becoming a practical alternative to cell-based therapies. This review study aims to describe the fabrication and use of bioscaffolds and biologically simulated bone materials. Also, we discuss the latest advances in biological simulation strategies, including ion implantation, extracellular matrix decellularization, and physical stimulation of the environment, from the micro/nano to the macro scales, as well as the advantages of other scaffold materials.

Methods
In this review study, related articles from 2008 to 2023 were searched in the Web of Science, PubMed, Scopus, and Google Scholar databases using the keywords bioscaffold, bone materials, biological materials, and bone repair. Finally, 95 eligible articles were selected and reviewed.

Results
Bone matrix is composed of mineral components (hydroxyapatite [HA]) and organic components that can be widely used in simulated systems due to their excellent biocompatibility. Ions such as Zn2+, Sr2+, Si4+, or other natural or polymeric materials and even bioceramic materials can be implanted into HA. This effectively mimics the natural bone mineralization process and therefore, stimulates the bone conduction process. It has been reported that decellularization of the extracellular matrix and its implantation in calcium phosphate scaffolds is effective in stimulating the activity of bioscaffolds and creating a suitable microenvironment for tissue regeneration, especially bone formation [5, 6, 7, 8, 9, 10]. Three-dimensional printing technology allows the control of the topological properties of the materials that make up bioscaffolds. This method also enables the fabrication of various bioscaffolds with variations in surface roughness and alignment of filaments and interconnected Internal open porosity that have complex 3D engineering. By mimicking the micro/nano structural features of bone tissues, cellular events such as migration, adhesion, proliferation, as well as cell differentiation can be regulated and bone regeneration can be further encouraged. In addition to biochemical signals, environmental physical stimuli such as electrical and magnetic factors can also influence cells and cause further bone regeneration. According to previous reports, bone tissue that possesses piezoelectric properties can generate potentials in response to mechanical stimuli and increase bone growth capacity. Hydrogels with flexible, tunable tensions can regulate cell behavior. It has been found that in cells cultured in gels, the proliferation of mesenchymal stem cells (MSCs) is faster, and the proliferation and osteogenic differentiation of the cells are also enhanced. The scaffold materials that have been used in different clinical trials for bone regeneration are presented in Table 1.



Conclusion
Considerable efforts have been made to regenerate bone tissue through biomimetic approaches that cover several cell cloning strategies. These efforts, through a combination of structural design, surface modification, and the use of external physical stimuli, have created great potential for bone regeneration. However, there are still significant challenges in simulating bone tissue structures and the widespread use of acellular or decellularized scaffolds to facilitate bone regeneration. It is clear that growth factors, hormones, and chemokines can regulate biological responses in the human body, but their side effects, high cost, and persistence prevent their application at the clinical level. Recent advances have shown that in vivo bone regeneration may be possible through a combination of tissue structural simulation and external physical stimulation. Therefore, the dependence on exogenous cells and biochemical factors in bone tissue engineering can be reduced. Furthermore, scaffold-based bone tissue engineering therapies that are safe, convenient, and, most importantly, cost-effective have significant advantages in clinical application.

Ethical Considerations
Compliance with ethical guidelines

This study was approved by the Ethic Committee of Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran (Code: IR.IAU.SRB.REC.1401.16).

Funding
This study was taken from the residency thesis of Amirreza Hajati Ziabari, approved by the Department of Pathobiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Authors' contributions
Author contributions: Conceptualization, Amirreza Hajati Ziabari, and Alireza Jahandideh; Methodology: All authors; Writing the original draft: Amirreza Hajati Ziabari; Review and editing: Alireza Jahandideh.

Conflicts of interest
There are no conflicts of interests to be declared.


References
  1. McAllister TN, Dusserre N, Maruszewski M, L'heureux N. Cell-based therapeutics from an economic perspective: Primed for a commercial success or a research sinkhole? Regenerative Medicine. 2008; 3(6):925-37. [DOI:10.2217/17460751.3.6.925] [PMID]
  2. Mummery CL, Davis RP, Krieger JE. Challenges in using stem cells for cardiac repair. Science Translational Medicine. 2010; 2(27):27ps17. [DOI:10.1126/scitranslmed.3000558] [PMID]
  3. Burdick JA, Mauck RL, Gorman JH 3rd, Gorman RC. Acellular biomaterials: An evolving alternative to cell-based therapies. Science Translational Medicine. 2013; 5(176):176ps4. [DOI:10.1126/scitranslmed.3003997] [PMID] [PMCID]
  4. Harrison JH. Synthetic materials as vascular prostheses. I. A comparative study in small vessels of nylon, dacron, orlon, ivalon sponge and teflon. American Journal of Surgery. 1958; 95(1):3-15. [DOI:10.1016/0002-9610(58)90735-9] [PMID]
  5. Same S, Navidi G, Samee G, Abedi F, Aghazadeh M, Milani M, et al. Gentamycin-loaded halloysite-based hydrogel nanocomposites for bone tissue regeneration: Fabrication, evaluation of the antibacterial activity and cell response. Biomedical Materials. 2022; 17(6):065018. [DOI:10.1088/1748-605X/ac94ad] [PMID]
  6. Javadian N,  Veshkini A, Jahandideh A, Akbarzadeh A, Asghari A. Ultrasonographic evaluation of effect of zeolite and zeolite/collagen nanocomposite scaffolds on healing of femurbone defect in rabbits. Veterinary Research & Biological Products. 2021; 34(3):114-20. [DOI:10.22092/vj.2020.341723.1686]
  7. Rad F, Davaran S, Babazadeh M, Akbarzadeh, Pazoki-Toroudi5 H. Biodegradable electrospun polyester-urethane nanofiber scaffold: Codelivery investigation of doxorubicin-ezetimibe and its synergistic effect on prostate cancer cell line. Journal of Nanomaterials. 2022; 2022(1):8818139.[DOI:10.1155/2022/8818139]
  8. Sagart A, Jahandideh A, Asghari A, Akbarzadeh A, Mortazavi P. [Investigating the regenerative effects of PRP and polycaprolactone-hydroxyapatite zeolite nanocomposites on wound healing after tooth extraction (Persian)]. Journal of Comparative Pathology. 2023; 19(2):3873-82. [DOI:10.30495/jcp.2022.21491]
  9. Same S, Kadkhoda J, Navidi G, Abedi F, Aghazadeh M, Milani M, et al. The fabrication of halloysite nanotube-based multicomponent hydrogel scaffolds for bone healing. Journal of Applied Biomaterials & Functional Materials. 2022; 20:22808000221111875. [DOI:10.1177/22808000221111875] [PMID]
  10. Saghebasl S, Akbarzadeh A, Gorabi AM, Nikzamir N, SeyedSadjadi M, Mostafavi E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. Polymers for Advanced Technologies. 2022; 33(7):2044-68. [DOI:10.1002/pat.5669]
  11. Neščáková Z, Zheng K, Liverani L, Nawaz Q, Galusková D, Kaňková H, et al. Multifunctional zinc ion doped sol - Gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioactive Materials. 2019; 4:312-21. [DOI:10.1016/j.bioactmat.2019.10.002] [PMID] [PMCID]
  12. Kim B, Ventura R, Lee BT. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 2018; 12(2):e1256-67. [DOI:10.1002/term.2529] [PMID]
  13. Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials. 2019; 198:107-21. [DOI:10.1016/j.biomaterials.2018.06.005] [PMID] [PMCID]
  14. Asadi N, Del Bakhshayesh AR, Sadeghzadeh H, Asl AN, Kaamyabi S, Akbarzadeh A. Nanocomposite electrospun scaffold based on polyurethane/polycaprolactone incorporating gold nanoparticles and soybean oil for tissue engineering applications. Journal of Bionic Engineering. 2023; 20(4):1712-22. [DOI:10.1007/s42235-023-00345-x]
  15. Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials. 2019; 218:119334. [DOI:10.1016/j.biomaterials.2019.119334] [PMID] [PMCID]
  16. O'Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW. The roles of ions on bone regeneration. Drug Discovery Today. 2018; 23(4):879-890. [DOI:10.1016/j.drudis.2018.01.049] [PMID]
  17. Mao Z, Gu YF, Zhang J, Shu WW, Cui YQ, Xu T. Superior biological performance and osteoinductive activity of Si-containing bioactive bone regeneration particles for alveolar bone reconstruction. Ceramics International. 2020; 46(1):353-64. [DOI:10.1016/j.ceramint.2019.08.269]
  18. Javadian N, Veshkini A, Jahandideh A, Akbarzadeh A, Asghari A. Ultrasonographic and radiographic evaluation of zeolite/collagen nanocomposite scaffolds compared with nanohydroxyapatite on experimental bone defect healing in rabbit femur. Crescent Journal of Medical and Biological Sciences. 2023; 10(1):49-55. [DOI:10.34172/cjmb.2023.08]
  19. Faraji D, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Effect of zeolite and zeolite/collagen nanocomposite scaffolds on healing of segmental femur bone defect in rabbits. Iranian Journal of Veterinary Surgery. 2017; 12(2):63-70. [DOI:10.22034/ivsa.2018.112807.1133]
  20. Faraji D, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Evaluation of influence of zeolite/collagen nanocomposite (ZC) and hydroxyapatite (HA) on bone healing: A study on rabbits. Archives of Razi Institute. 2019; 74(4):395-403. [DOI:10.22092/ari.2018.121308.1211]
  21. Sagart A, Jahandideh A, Asghari A, Akbarzadeh A, Mortazavi P. The comparative effects of platelet-rich plasma and polycaprolactone-hydroxyapatite zeolite nanocomposites on wound healing after tooth extraction. Crescent Journal of Medical & Biological Sciences. 2024; 11(4):395-403. [DOI:10.34172/cjmb.2023.33]
  22. Çelikbaş İ, Mavi E, Hepokur C. The evaluation of the effects of natural zeolite (Clinoptilolite) in diabetic rats on bone healing in dental extracting socket. Journal of Oral Biology and Craniofacial Research. 2023; 13(1):36-40. [PMID]
  1. Mohammadi R, Amini K. Guided bone regeneration of mandibles using chitosan scaffold seeded with characterized uncultured omental adipose-derived stromal vascular fraction: An animal study. The International Journal of Oral & Maxillofacial Implants. 2015; 30(1):216-22. [DOI:10.11607/jomi.3542] [PMID]
  2. Hung CC, Chaya A, Liu K, Verdelis K, Sfeir C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomaterialia. 2019; 98:246-55. [DOI:10.1016/j.actbio.2019.06.001] [PMID]
  3. Wagner AS, Glenske K, Henß A, Kruppke B, Rößler S, Hanke T, et al. Cell behavior of human mesenchymal stromal cells in response to silica/collagen based xerogels and calcium deficient culture conditions. Biomedical Materials. 2017; 12(4):045003. [DOI:10.1088/1748-605X/aa6e29] [PMID]
  4. Wagner AS, Glenske K, Wolf V, Fietz D, Mazurek S, Hanke T, et al. Osteogenic differentiation capacity of human mesenchymal stromal cells in response to extracellular calcium with special regard to connexin 43. Annals of Anatomy. 2017; 209:18-24. [DOI:10.1016/j.aanat.2016.09.005] [PMID]
  5. Eliaz N, Metoki N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017; 10(4):334. [DOI:10.3390/ma10040334] [PMID] [PMCID]
  6. Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, et al. Applications of metals for bone regeneration. International Journal of Molecular Sciences. 2018; 19(3):826. [DOI:10.3390/ijms19030826] [PMID] [PMCID]
  7. Sonbolekar H, Alireza J, Ahmad A, Hesaraki S, Akbarzadeh A. Assessment of tricalcium phosphate/titanium dioxide (TCP/TiO2) nanocomposite scaffold compared with bone autograft and hydroxyapatite (HA) on the healing of segmental femur bone defect in rabbits. Journal of Materials Science. 2022; 33(12):80. [DOI:10.1007/s10856-022-06694-z] [PMID] [PMCID]
  8. Qing T, Mahmood M, Zheng Y, Biris AS, Shi L, Casciano DA. A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells. Journal of Applied Toxicology. 2018; 38(2):172-179. [DOI:10.1002/jat.3528] [PMID]
  9. Weng W, Li X, Nie W, Liu H, Liu S, Huang J, et al. One-step preparation of an AgNP-nHA@RGO three-dimensional porous scaffold and its application in infected bone defect treatment. International Journal of Nanomedicine. 2020; 15:5027-42. [DOI:10.2147/IJN.S241859] [PMID] [PMCID]
  10. Wang Q, Chen B, Cao M, Sun J, Wu H, Zhao P, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials. 2016; 86:11-20. [DOI:10.1016/j.biomaterials.2016.02.004] [PMID]
  11. Zhao GY, Zhao LP, He YF, Li GF, Gao C, Li K, et al. A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency. Biological Trace Element Research. 2012; 150(1-3):487-95. [DOI:10.1007/s12011-012-9511-9] [PMID]
  12. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013; 31(3):169-76. [DOI:10.1016/j.tibtech.2012.12.004] [PMID]
  13. Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, et al. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules. 2015; 16(9):2541-55. [DOI:10.1021/acs.biomac.5b00852] [PMID]
  14. Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A. [Evaluation of β-tricalciumphosphate (β-TCP) nanocomposite granules compared with nanocomposite hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits (Persian)]. Journal of Comparative Pathobiology. 2018; 15(4):2635-44. [Link]
  15. Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Histopathological Evaluation of Polycaprolactone Nanocomposite Compared with Tricalcium Phosphate in Bone Healing. Journal of Veterinary Research. 2018; 62(3):385-94.  [DOI:10.2478/jvetres-2018-0055] [PMID] [PMCID]
  16. Mohseni M, Jahandideh A, Abedi G, Akbarzadeh A, Hesaraki S. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46(2):242-9. [DOI:10.1080/21691401.2017.1324463] [PMID]
  17. Farahi H, Mashhadi-Rafie S, Jahandideh A, Asghari A, Shirazi-Beheshtiha SH. Evaluation of possible beneficial effect of tricalcium phosphate/collagen (TCP/Collagen) nanocomposite scaffold on bone healing in rabbits: Biochemical assessments. Iranian Journal of Veterinary Surgery. 2019; 14(2):162-72. [Link]
  18. Wang X, Yu T, Chen G, Zou J, Li J, Yan J. Preparation and characterization of a chitosan/gelatin/extracellular matrix scaffold and its application in tissue engineering. Tissue Engineering. 2017; 23(3):169-79. [DOI:10.1089/ten.tec.2016.0511] [PMID]
  19. Chi H, Song X, Song C, Zhao W, Chen G, Jiang A, et al. Chitosan-gelatin scaffolds incorporating decellularized platelet-rich fibrin promote bone regeneration. ACS Biomaterials Science & Engineering. 2019; 5(10):5305-15. [DOI:10.1021/acsbiomaterials.9b00788] [PMID]
  20. Miron RJ, Zhang Y. Autologous liquid platelet rich fibrin: A novel drug delivery system. Acta Biomaterialia. 2018; 75:35-51. [DOI:10.1016/j.actbio.2018.05.021] [PMID]
  21. Thorat M, Pradeep AR, Pallavi B. Clinical effect of autologous platelet-rich fibrin in the treatment of intra-bony defects: A controlled clinical trial. Journal of Clinical Periodontology. 2011; 38(10):925-32. [DOI:10.1111/j.1600-051X.2011.01760.x] [PMID]
  22. Faot F, Deprez S, Vandamme K, Camargos GV, Pinto N, Wouters J, et al. The effect of L-PRF membranes on bone healing in rabbit tibiae bone defects: Micro-CT and biomarker results. Scientific Reports. 2017; 7:46452. [DOI:10.1038/srep46452] [PMID] [PMCID]
  1. Hajati Ziabari A, Asadi Heris M, Mohammad Doodmani S, Jahandideh A, Koorehpaz K, Mohammadi R. Cinnamon nanoparticles loaded on chitosan- gelatin nanoparticles enhanced burn wound healing in diabetic foot ulcers in rats. The International Journal of Lower Extremity Wounds. 2022; 15347346221101245. [DOI:10.1177/15347346221101245] [PMID]
  2. Zhang Y, Yang F, Liu K, Shen H, Zhu Y, Zhang W, et al. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials. 2012; 33(10):2926-35. [DOI:10.1016/j.biomaterials.2012.01.006] [PMID]
  3. Shin YM, Shin HJ, Yang DH, Koh YJ, Shin H, Chun HJ. Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. Journal of Materials Chemistry. 2017; 5(44):8725-37. [DOI:10.1039/C7TB01758H] [PMID]
  4. Zhu C, Pongkitwitoon S, Qiu J, Thomopoulos S, Xia Y. Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Advanced Materials. 2018; 30(16):e1707306. [DOI:10.1002/adma.201707306] [PMID] [PMCID]
  5. Woodard LN, Kmetz KT, Roth AA, Page VM, Grunlan MA. Porous poly(ε-caprolactone)-poly(l-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair. Biomacromolecules. 2017; 18(12):4075-83. [DOI:10.1021/acs.biomac.7b01155] [PMID] [PMCID]
  6. Wang L, Qiu Y, Lv H, Si Y, Liu L, Zhang Q, et al. 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Advanced Functional Materials. 2019; 29(31):1901407. [DOI:10.1002/adfm.201901407]
  7. Nair AK, Gautieri A, Chang SW, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nature Communications. 2013; 4:1724. [DOI:10.1038/ncomms2720] [PMID] [PMCID]
  8. Martinez LR, Mihu MR, Han G, Frases S, Cordero RJ, Casadevall A, et al. The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials. 2010; 31(4):669-79. [DOI:10.1016/j.biomaterials.2009.09.087] [PMID] [PMCID]
  9. Nabavi S, Jahandideh A, Akbarzadeh A. [Evaluation of polycaprolactone (PCL) based nanogel containing tetracycline on experimental wound infected with staphylococcus aureus bacteria healing on rat’s skin (Persian)]. Veterinary Research & Biological Products. 2023; 36(3):24-35. [DOI:10.22092/vj.2022.359948.2008]
  10. Correia CO, Mano JF. Chitosan scaffolds with a shape memory effect induced by hydration. Journal of Materials Chemistry. 2014; 2(21):3315-23. [DOI:10.1039/C4TB00226A] [PMID]
  11. Wang L, Qiu Y, Guo Y, Si Y, Liu L, Cao J, et al. Smart, Elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Letters. 2019; 19(12):9112-20. [DOI:10.1021/acs.nanolett.9b04313] [PMID]
  1. Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, et al. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomaterialia. 2015; 20:1-9.[DOI:10.1016/j.actbio.2015.04.008] [PMID]
  2. Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: A novel tool for tissue engineering. Tissue Engineering. Part B, Reviews. 2013; 19(1):48-57. [DOI:10.1089/ten.teb.2012.0183] [PMID]
  3. Hamedfar H, Zivari-Ghader T, Akbarzadeh A, Davaran S. Physicochemical characteristics of chitosan–alginate scaffold containing atorvastatin. Advances in Polymer Technology. 2023; 2023(1):9452164. [DOI:10.1155/2023/9452164]
  4. Farahi H, Rafie SM, Jahandideh A, Asghari A, Shirazi-Beheshtiha SH. Safety evaluation of tricalcium phosphate/collagen nanocomposite scaffold in bone defect in New Zealand white rabbit model. Crescent Journal of Medical & Biological Sciences. 2019; 6(4):449-54. [Link]
  5. Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artificial Cells, Nanomedicine, and Biotechnology. 2017; 45(5):961-8. [DOI:10.1080/21691401.2016.1198360] [PMID]
  6. Dang W, Li T, Li B, Ma H, Zhai D, Wang X, et al. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials. 2018; 160:92-106. [DOI:10.1016/j.biomaterials.2017.11.020] [PMID]
  7. Yanagi T, Kajiya H, Kawaguchi M, Kido H, Fukushima T. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects. Journal of Biomaterials Applications. 2015; 29(8):1109-18.[DOI:10.1177/0885328214556913] [PMID]
  8. Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials. 2016; 111:138-48. [DOI:10.1016/j.biomaterials.2016.10.005] [PMID]
  9. Einhorn TA, Gerstenfeld LC. Fracture healing: Mechanisms and interventions. Nature Reviews. Rheumatology. 2015; 11(1):45-54. [DOI:10.1038/nrrheum.2014.164] [PMID] [PMCID]
  10. Liu Y, Luo D, Yu M, Yu Wang, Shanshan Jin, Zixin Li, et al. Thermodynamically controlled self-assembly of hierarchically staggered architecture as an osteoinductive alternative to bone autografts. Advanced Functional Materials. 2019; 29(10):1806445. [DOI:10.1002/adfm.201806445]
  11. Ma L, Feng X, Liang H, Yu Song, Lei Tan, Bingjin Wang, et al. A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration. Materials Today. 2020; 36:48-62. [DOI:10.1016/j.mattod.2019.12.005]
  12. Zhang X, Zhang C, Lin Y, Hu P, Shen Y, Wang K, et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano. 2016; 10(8):7279-86. [DOI:10.1021/acsnano.6b02247] [PMID]
  13. Mobini S, Leppik L, Thottakkattumana Parameswaran V, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ. 2017; 5:e2821.[DOI:10.7717/peerj.2821] [PMID] [PMCID]
  14. Bandyopadhyay A, Shivaram A, Mitra I, Bose S. Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration. Acta Biomaterialia. 2019; 96:686-93. [DOI:10.1016/j.actbio.2019.07.028] [PMID] [PMCID]
  15. Mushtaq F, Torlakcik H, Vallmajo-Martin Q, Siringil EC, Zhang J, Röhrig C, et al. Magnetoelectric 3D scaffolds for enhanced bone cell proliferation. Applied Materials Today. 2019; 16:290-300. [DOI:10.1016/j.apmt.2019.06.004]
  16. Kapat K, Shubhra QT, Zhou M, Leeuwenburgh S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Advanced Functional Materials. 2020; 30(44):1909045.[DOI:10.1002/adfm.201909045]
  17. Zhu Y, Yang Q, Yang M, Zhan X, Lan F, He J, et al. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano. 2017; 11(4):3690-704. [DOI:10.1021/acsnano.6b08193] [PMID]
  18. Xu HY, Gu N. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Frontiers of Materials Science. 2014; 8:20-31. [DOI:10.1007/s11706-014-0232-1]
  19. Sapir-Lekhovitser Y, Rotenberg MY, Jopp J, Friedman G, Polyak B, Cohen S. Magnetically actuated tissue engineered scaffold: Insights into mechanism of physical stimulation. Nanoscale. 2016; 8(6):3386-99. [DOI:10.1039/C5NR05500H] [PMID] [PMCID]
  20. Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials. 2014; 13(10):970-8. [DOI:10.1038/nmat4009] [PMID]
  21. Steinmetz NJ, Aisenbrey EA, Westbrook KK, Qi HJ, Bryant SJ. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomaterialia. 2015; 21:142-53. [DOI:10.1016/j.actbio.2015.04.015] [PMID]
  22. Hu Q, Liu M, Chen G, Xu Z, Lv Y. Demineralized bone scaffolds with tunable matrix stiffness for efficient bone integration. ACS Applied Materials & Interfaces. 2018; 10(33):27669-80. [DOI:10.1021/acsami.8b08668] [PMID]
  23. Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Mechanotransduction in osteoblast regulation and bone disease. Trends in Molecular Medicine. 2009; 15(5):208-16. [DOI:10.1016/j.molmed.2009.03.001] [PMID]
  24. Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioengineering & Translational Medicine. 2020; 6(2):e10206. [DOI:10.1002/btm2.10206] [PMID] [PMCID]
  1. Stewart C, Akhavan B, Wise SG, Bilek MM. A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Progress in Materials Science. 2019; 106:100588. [DOI:10.1016/j.pmatsci.2019.100588]
  2. Kossover O, Cohen N, Lewis JA, Berkovitch Y, Peled E, Seliktar D. Growth factor delivery for the repair of a critical size tibia defect using an acellular, biodegradable polyethylene glycol-albumin hydrogel implant. ACS Biomaterials Science & Engineering. 2020; 6(1):100-11. [DOI:10.1021/acsbiomaterials.9b00672] [PMID]
  3. Sonbolekar H, Jahandideh A, Asghari A, Hesaraki S, Akbarzadeh, A. [Evaluation of the performance of titanium dioxide nanocomposite scaffold compared to hydroxyapatite on the healing of rabbit femoral bone defects (Persian)]. Journal of Comparative Pathology. 2023; 20(1):4011-8. [Link]
  4. Yazdanian A, Jahandideh A, Hesaraki S. The effect of green synthesis of TiO2 nanoparticles/collagen/HA scaffold in bone regeneration: As an animal study. Veterinary Medicine and Science. 2023; 9(5):2342-51. [DOI:10.1002/vms3.1222] [PMID] [PMCID]
  5. Zhang L, Dong Y, Xue Y, Shi J, Zhang X, Liu Y, et al. Multifunctional triple-layered composite scaffolds combining platelet-rich fibrin promote bone regeneration. ACS Biomaterials Science & Engineering. 2019; 5(12):6691-702. [DOI:10.1021/acsbiomaterials.9b01022] [PMID]
  6. Yassin MA, Fuoco T, Mohamed-Ahmed S, Mustafa K, Finne-Wistrand A. 3D and porous RGDC-functionalized polyester-based scaffolds as a niche to induce osteogenic differentiation of human bone marrow stem cells. Macromolecular Bioscience. 2019; 19(6):e1900049. [DOI:10.1002/mabi.201900049] [PMID]
  7. Dos Santos BP, Garbay B, Fenelon M, Rosselin M, Garanger E, Lecommandoux S, et al. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomaterialia. 2019; 99:154-67. [DOI:10.1016/j.actbio.2019.08.028] [PMID]
  8. Zeng Y, Shih YR, Baht GS, Varghese S. In vivo sequestration of innate small molecules to promote bone healing. Advanced Materials. 2020; 32(8):1906022. [DOI:10.1002/adma.201906022]
  9. Wang Y, Hu X, Dai J, Wang J, Tan Y, Yang X, et al. A 3D graphene coated bioglass scaffold for bone defect therapy based on the molecular targeting approach. Journal of Materials Chemistry. 2017; 5(33):6794-800. [DOI:10.1039/C7TB01515A] [PMID]
  10. Eckhart KE, Holt BD, Laurencin MG, Sydlik SA. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomaterials Science. 2019; 7(9):3876-85. [DOI:10.1039/C9BM00867E] [PMID]
  11. Yan S, Yin J, Cui L, Yang Y, Chen X. Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids and Surfaces. B, Biointerfaces. 2011; 86(1):218-24. [DOI:10.1016/j.colsurfb.2011.04.004] [PMID]
  12. Wang SJ, Jiang D, Zhang ZZ, Chen YR, Yang ZD, Zhang JY, et al. Biomimetic Nanosilica-Collagen Scaffolds for In Situ Bone Regeneration: Toward a cell-free, one-step surgery. Advanced Materials. 2019; 31(49):e1904341. [DOI:10.1002/adma.201904341] [PMID]
  13. Lodoso-Torrecilla I, van Gestel NAP, Diaz-Gomez L, Grosfeld EC, Laperre K, Wolke JGC, et al. Multimodal pore formation in calcium phosphate cements. Journal of Biomedical Materials Research. Part A. 2018; 106(2):500-9. [DOI:10.1002/jbm.a.36245] [PMID] [PMCID]
  14. Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia. 2018; 80:1-30. [DOI:10.1016/j.actbio.2018.09.031] [PMID]
  15. Ding W, Ge Y, Zhang T, Zhang C, Yin X. Advanced construction strategies to obtain nanocomposite hydrogels for bone repair and regeneration. NPG Asia Materials. 2024; 16(1):14.[DOI:10.1038/s41427-024-00533-z]
  16. Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, et al. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Frontiers in Bioengineering and Biotechnology. 2024; 12:1273541. [DOI:10.3389/fbioe.2024.1273541] [PMID] [PMCID]
Review Paper: Review paper | Subject: Special
Received: 2024/02/10 | Accepted: 2024/05/29 | Published: 2025/04/1

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Guilan University of Medical Sciences

Designed & Developed by : Yektaweb